DAM SAFETY ASSURANCE PROGRAM EVALUATION REPORT AND ENVIRONMENTAL IMPACT STATEMENT

APPENDIX C – TAB II GEOTECHNICAL

DOVER DAM, OH TUSCARAWAS RIVER

TABLE OF CONTENTS

1	Pur	pose and Scope	. 1
	1.1	References	. 1
2	Geo	logy	. 2
	2.1 2.2 2.3 2.4	Regional Geology Local Geology Foundation Conditions Seismicity	. 2
3	Stal	oility Re-analysis	. 5
4	Geo	logical Investigations to Date	. 6
	4.1	1982-83 Investigations	. 6
	4.2	2004 Investigations	
	4.2.	U	
_	4.2.2	<i>C</i> , 1 <i>C C</i>	
5	Roc	k Testing	. 8
	5.1	Sliding Shear Strength	
	5.2	Cross Bed Shear Strength	
	5.3 5.4	Smooth Sawn Surface Shear Strength	
	5.5	Elastic Modulus	
	5.6	Allowable Bearing Capacity	
	5.7	Failure Plane Selection	
	5.8	Unit Weight	11
6	Soil	Characterization	11
	6.1	General	13
	6.2	Existing Soils	
	6.2.		
	6.2.2	1	
	6.2.3		
	6.2.4	- F - · · · · · · · · · · · · · · · · ·	
	6.2.	5 Rock Fill	1 /

6	5.2.6 Uncompacted Backfill	17
6.3	Groundwater Conditions	17
7 S	Soil Design Considerations	17
7.1	General	17
7.2		
7.3	•	
7.4	·	
7.5	Streambank Erosion Protection.	19
7	7.5.1 Stone Slope Protection	19
7	7.5.2 Environmental Design Consideration	20
8 L	U plift	20
9 E	Effect of Anchors on Uplift	23
10	Breach Assumptions	24
11	Anchor Designs	24
11.1	1 Corrosion Protection	24
11.2	2 Anchor Depth Calculation	25
11.3		
12	Future Explorations and Investigations	28
12.1	1 Rock	28
12.2	2 Soil	28
12.3	3 Seismic	28

LIST OF FIGURES, TABLES, PHOTO AND EXHIBITS

Figure No.	<u>Title</u>
Figure II-1 Figure II-2 Figure II-3	Drain Efficiency (EM1110-2-2100) Anchor Embedment (EM110-1-2908) 3-D Anchor Embedment Check
Table No	Tidle
Table No.	<u>Title</u>
Table II-1	Summary of Dover Dam Rock Strengths
Table II-2	Typical Coefficients of Lateral Earth Pressure At- Rest (from Clough and Duncan, 1991)
Table II-3	Approximate values of undrained shear strength for cohesive soils based on SPT blow count N-values (from Terzaghi and Peck, 1967)
Table II-4	Empirical values for Φ , D_r , and unit weight of granular soils based on the standard penetration number with correction for depth and for fine saturated sands (from Bowles, 1968)
Table II-5	Soil Properties
Table II-6	Foundation Drain Data
Photo No.	<u>Title</u>
Photo II-1	Foundation Report Photo of Fault
Exhibit No.	<u>Title</u>
Exhibit II-1	Boring Location Plan
Exhibit II-2	Rock Profiles and Sections
Exhibit II-3	Geology and Soils Legend
Exhibit II-4	Graphic Logs of Borings
Exhibit II-5	Overburden Sections
Exhibit II-6	Rock Laboratory Test Data
Exhibit II-7	Uplift
Exhibit II-8	Mapping of Faults and Joints
Exhibit II-9	Anchor Embedment

1 Purpose and Scope

This evaluation report documents project foundation characteristics and geotechnical strength parameters used for the stability reevaluation. It also describes the required subsurface investigations, geotechnical testing, and methods used to establish bedrock and soil strength parameters, drain efficiency, and preliminary seismic parameters. For general information regarding the dam and when it was constructed see paragraph 1.3 ("Existing Project Description") of the main report.

1.1 References

ASTM D1586-99	Standard Test Method for Penetration Test and Split Barrel Sampling of Soils, 10 January 1999
ASTM D 2488	Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), 10 February 2000
EM 1110-1-1804	Geotechnical Investigations, 1 January 2001
EM 1110-2-1902	Slope Stability, 31 October 2003
EM 1110-2-1906	Laboratory Soils Testing, 20 August 1986
EM 1110-2-2502	Retaining and Flood Walls, 29 September 1989
EM 1110-1-2908	Rock Foundations, 30 November 1994
EM 1110-2-6050	Response Spectra and Seismic Analysis for Concrete Hydraulic Structures, 30 June 1999
ER 1110-2-1806	Earthquake Design and Evaluation for Civil Works Projects, 31 July 1995

Addenda to the Analysis of Design, Dover Dam, 1939.

Dover Dam Periodic Inspection Report No. 1, U.S. Army Corps of Engineers, Huntington District, March 1970

Bowles, J., 1968. Foundation Analysis and Design. McGraw-Hill, New York.

Clough, G.W. and Duncan, J.M., 1991. *Earth pressures*, chapter in Foundation Engineering Handbook, 2nd edition, edited by Hsai-Yang Fang, van Nostrand Reinhold, New York, NY.

- Das, B.M., 1998. *Principles of Geotechnical Engineering, Fourth Edition*. PWS Publishing Company, Boston, MA.
- Fuller, Mossbarger Scott & May, 1999. Seismic Analysis Report for the Muskingum River Basin.
- Goodman, Richard, E., 1980. *Introduction to Rock Mechanics*. John Wiley & Sons.
- McGregor, J.A. and Duncan, J.M., *Performance and Use of the Standard Penetration Test in Geotechnical Engineering Practice*, Virginia Polytechnic Institute Center for Geotechnical Practice and Research, October 1998.
- Post-Tensioning Institute, *Recommendations for Prestressed Rock and Soil Anchors, Fourth Edition*, Post-Tensioning Institute Phoenix, AZ, 2004.
- Terzaghi, K. and Peck, R.B., 1976. *Soil Mechanics in Engineering Practice*. John Wiley, New York, NY.

2 Geology

2.1 **Regional Geology**

Dover Dam is located in the Fairfield Township of Tuscarawas County, which is part of the Appalachian Basin.

About 2 miles upstream from the dam site, the Tuscarawas River leaves a broad, deeply filled pre-glacial valley and flows for 6 miles through a narrow steep-walled gorge of post-glacial origin. The river throughout most of the length of the gorge flows on bedrock or on a very shallow cover of alluvial sand and gravel over bedrock. Bedrock consists of nearly horizontal beds of shale, siltstone, sandstone, limestone and coal. These beds are part of the Pottsville Group of the Lower Pennsylvanian System.

The Lower Mercer limestone forms most of the foundation of the dam, with shale, sandstone, and coal over- and underlying the limestone. Below the limestone is shale into which several of the monoliths are keyed. The crystalline basement in Tuscarawas County is greater than 1,818 m (6,000') below the top of ground.

2.2 Local Geology

At the dam site prior to construction, the river had a width of 350 feet and a low water surface elevation of 865. The valley walls rise on steep slopes from the water's edge to an upland whose general elevation ranges from 1100 to 1200 feet. The valley consists of approximately 7 feet of alluvial sand and gravel to top of bedrock. At the dam site, the walls are of the Pennsylvanian age bedrock units of the Allegheny and Pottsville Series.

The abutments are composed primarily of shales with one 35 foot thick sandstone unit and 1 to 2 foot thick seam of coal. Bedrock is deeply weathered in the abutments but, according to the foundation reports, weathered rock was removed to ensure that all concrete monoliths were founded on sound bedrock. The groundwater surface was high in the abutments prior to construction of the dam, see paragraph 6.3 "Groundwater Conditions" for existing conditions.

The bedrock surface in the valley bottom is controlled by the upper surface of one of the limestone units. This 4-foot thick, Lower Mercer Limestone became the primary founding unit for the dam. The limestone is immediately underlain by a carbonaceous shale, ranging from 3 to 7 feet thick. Beneath this shale is a 20 to 25-foot thick, sandy siltstone which coarsens with depth into a thicker micaceous and silty sandstone unit. Due to minor local flexures, the contacts between the various bedrock units appear to form an irregular surface of an undulating nature.

Some stress-relief related fracturing and associated weathering in the dam abutments is noted in the construction foundation reports. Fracturing (slickensided joints) and some associated minor faulting is apparent in the limestone founding unit and continues thru the underlying shales and siltstones. One thrust fault of major consequence was encountered in the foundation although their were multiple minor faults too. The fault strike varies from N80°W to N75°E, dipping from 45°SW to 45°SE.

2.3 Foundation Conditions

The abutment monoliths are founded on various bedrock units. Monoliths 4 and 20 are founded on sandy shale. Monolith 3 is founded, partly on limestone and partly on sandstone. Monoliths 1, 2, 21, 22, and 23 are founded on this massive sandstone. Monolith 5 was founded on the Lower Mercer Limestone unit. All of the abutment monoliths are embedded into bedrock excavations with confinements both upstream and downstream by weathered rock which was deemed during design, suitable to provide the necessary sliding stability.

All of the spillway monoliths (Monoliths 7 through 15) along with non-overflow monoliths 16 through 19 are founded on top of the Lower Mercer Limestone, see Exhibit II-8 "Rock Profiles and Sections." This approximately four-foot thick limestone is continuous across the valley bottom and is underlain by a less competent carbonaceous shale of similar thickness. The logs from the 1982-83 exploration program describe moderate to severely broken zones in the carbonaceous shale. The limestone serves as the primary founding unit for the monoliths including the associated stilling basin monoliths and retaining walls. Founding elevations vary from 847 to 855. At the upstream heel of the dam a 20 foot deep rebar reinforced key was formed through the carbonaceous shale and into an underlying sandy-siltstone. The reinforced key was necessary to provide the required factor of safety against sliding failure.

After the limestone was exposed, the above mentioned fault was observed trending approximately east to west across Monoliths 14, 14A and 15, see Exhibit II-8 "Mapping

of Faults and Joints." The fault extends through the limestone and into the underlying shales. It is further described in the Addenda to the Analysis of Design, Dover Dam (1939): "Two types of displacement have occurred. The limestone capping the north side of the fault was pushed over that on the south side forming a "thrust" fault. On the other hand, the shale on the north side moved downward in relation to the shale on the south side, resulting in a typical "reverse" fault. Both movements are due to compression but a thrust fault dips less than 45° and a reverse dips greater than 45°. This faulting resulted in a 2 foot thick opening between the limestone and shale and severe broken conditions in the shale along the fault." Because of this faulting the foundations for Monoliths 14, 14A and 15 were lowered to the sandy-siltstone at the elevation of the originally planned key. Extensive grouting was performed under the foundation along both sides of the fault and in Monoliths 12 and 13 to fill the opening between the limestone and the siltstone.

A fault striking N-S and dipping about 70° E was seen in the limestone in monoliths 13B and 13C. It was a normal fault with about 2 ½ feet of displacement. It cut a second fault that was striking E-W. It showed about 3 feet of offset on an overthrust.

Smaller faults, striking N-E to N25°E, all nearly vertical, with displacements of 1 to 2 feet were also reported to the north of the major fault. All cut the limestone and shale, but were not readily traceable in the underlying sandstone except in a grout hole in monolith 11. The sandstone from elevation 800' MSL to 810' MSL was "shattered" and severely broken. This may be a fault, but it was only intercepted by one boring and never excavated, so no more is known about it.

A number of other minor faults were encountered in the foundation of the dam and stilling basin monoliths. The faults and joints were mapped and reported in each monolith foundation report, these were compiled and are shown in Exhibit No. II-8. These faults and major joints and fractures in the foundation were treated with special grout lines placed in the discontinuity.

At the upstream face of Spillway Monoliths 7 through 15 and Non-Overflow Monoliths 16 through 19, a cutoff trench was excavated 20 feet deep and 10.5 feet wide at the bottom with a downstream face sloped 2 vertical on 1 horizontal. The trench extended to elevation 830 for Monoliths 7 through 12 and to elevation 835 for Monoliths 13 through 19. Grouting was performed on the upstream and downstream sides of the cutoff trench prior to beginning rock excavation. Final grouting was performed through 3-1/2-inch diameter preformed vertical holes on 5-foot centers at the base of the cutoff trench. Grouting was performed from the top of the first pour.

The grout holes were drilled 30 feet into rock and were grouted with 30 psi pressure in the top 15 feet and 80 psi in the bottom 15 feet of grout hole.

The upper surface of the founding limestone member slopes more steeply at the downstream limit of the stilling basin thus less erosion resistant shales form the bedrock surface at that location. In order to prevent scouring of the channel bottom downstream from the end of the apron, a 20-foot strip of derrick stone was placed against the apron end sill over about one-half the width of the stilling basin. A 15-foot stepped slab of

concrete was placed against the downstream face of the apron and doweled into the limestone and the concrete over the remaining (north) one-half of the basin.

2.4 **Seismicity**

ER 1110-2-1806 Earthquake Design and Evaluation for Civil Works Projects (1995), Appendix C, Uniform Building Code Zone Map shows Dover Dam in seismic zone 1.

In May of 1999 AE Contractors Fuller, Mossbarger Scott & May, (FMSM) submitted the "Seismic Analysis Report for the Muskingum River Basin". The objective of this study was to evaluate and develop seismic ground motions for use as the basis for future studies in the Muskingum River Basin. As the need for analyses, designs and/or remediation projects arise at each of the 16 dams or their appurtenances, this study will serve as the basis for the development of site specific ground motions. This report is intended to partially satisfy requirements in ER 1110-2-1806 Earthquake Design and Evaluation for Civil Works Projects (1995) and ER 1110-2-1155 Dam Safety Assurance (1997) for a Phase 1 seismic study. Other references such as Engineering Circular 1110-2-6050 and "Fundamentals of Earthquake Resistant Construction" by Krinitzsky, Gould and Edinger, Published by Wiley, 1993 were utilized as guides in completion of the study.

The recommended Operation Basis Earthquake (OBE) consists of a magnitude 5.2 m_b event having an epicentral distance of 15 km and a focal depth of 5 km. The resulting peak horizontal acceleration (PHA), peak horizontal velocity (PHV) and duration are 98 cm/sec², 6.1 cm/sec and 3.9 seconds, respectively. The recommended Maximum Credible Earthquake (MCE) consist of a magnitude 5.5 m_b event having an epicentral distance of 20 km and a focal depth of 5 to 10 km. The resulting PHA, PHV and duration are 147 cm/sec², 11.2 cm/sec and 6.8 seconds, respectively. The recommended acceleration values for the OBE and MCE are believed to roughly correspond to the mean plus one standard deviation hazard for return periods of 144 and 500 years, respectively. Alternatively, the OBE and MCE correspond to the 400 and 3000 year return interval events respectively, when compared to the mean hazard. The equal hazard spectra indicate the highest spectral acceleration is realized at frequencies ranging from 5 to 20 Hz which is expected for this region of the United States.

The FMSM 1999 report concludes that for most structures, the motions supplied with the report could be used without alteration. However, other structures, such as Dover Dam, may be sensitive to a narrow range of frequencies not investigated because of the general nature of the study. Consequently, it is recommended that a future study be done that reviews the motions supplied in the FMSM 1999 report and alters them, as necessary, for Dover Dam's site specific conditions.

3 Stability Re-analysis

Concerns over project stability have been documented in past periodic inspection reports. These concerns, due primarily to changes in analysis methodology and foundation

uncertainties, have resulted in recommendations for reanalysis, and programs of subsurface investigation.

Typical non-overflow and spillway monoliths were reanalyzed for structural stability after the second periodic inspection. The analyses are documented in Appendix V of that inspection report, transmitted 17 June 1977. For the 1977 reanalysis, parameters such as compressive strength, cohesion, and shear friction angle for certain foundation lithologies were assumed, based on engineering judgment. Strengths for other members were derived as weighted averages from the test data used for the original design. (See Appendix III of Periodic Inspection Report No. 1, for the original test results).

For the 1977 reanalysis, the stability was evaluated using full uplift over 100% of the base area. The rock properties used in the original design were adopted. These strengths discounted cohesion on the bedding planes. Resistance to sliding was dependent upon passive resistance due to embedment of the monoliths into rock. The stability was analyzed using the "Sliding Resistance Method" which looks at the ratio of horizontal forces to vertical forces. Results of the analyses indicated that all monoliths appeared to be safe against overturning, sliding, and bearing failure except Monoliths 7 through 9. The factor of safety against sliding for Monoliths 7 through 9 was found to be 0.75. The report went on to recommend a program of foundation exploration and further analyses.

The Endorsements to the 2nd Periodic Inspection Report concurred with the above recommendation (refer to 1st Endorsement, subject "Dover Dam, Ohio, Periodic Inspection Report No. 2," dated 4 October 1977; and OCE letter, subject same, dated 2 November 1977). Ohio River Division directed the District to submit a completed plan, schedule and cost estimate for the foundation exploration program. The drilling, completed in 1983, is discussed in the next section.

4 Geological Investigations to Date

The site geology was investigated during the design and construction of the dam by drilling forty-two core borings located along seven ranges across the valley bottom. These ranges are located from 600 feet upstream of the dam axis to 600 feet downstream. Four 6-inch diameter holes were drilled for test samples. In addition to the core borings, four test pits were dug to depths ranging from 25 to 61 feet. Two investigative programs have been carried out since the third periodic inspection.

4.1 **1982-83 Investigations**

The first program consisted of 15 NX borings, 3 vertical and 12 angled drilled from inside the operations gallery. The borings were logged by a Huntington District Geologist and the strike and dip of the prominent joints were calculated from the angled borings (see Exhibit II-10). Core loss was 5.6% or 17.7 feet for 316.5 feet of drilling. A boring plan and logs are included in Exhibits II-1 and II-4 respectively.

4.2 **2004 Investigations**

4.2.1 Rock Coring

The drilling program consisted of 14, 4-inch core borings located on each abutment. See Exhibit II-1 and II-4 for the location and logs of these borings. The exploration program's main purpose was to characterize the foundation conditions in the abutments which had not been considered in the earlier drilling program. Another facet of this drilling program was to obtain and test materials lithologically similar to those in the valley bottom, and attempt to interpolate rock strengths across the valley between the abutments. Core recovery, was higher than the earlier exploration program with only 0.3% or 2.8 feet lost in 839.8 feet of drilling. The core barrel used was a 5ft Hoffman double tube with a split inner barrel. The core was sealed in plastic to maintain moisture content, and placed in core boxes padded with sawdust to keep the core in good condition during shipping and handling and prior to test sample selection. The borings were relogged by Huntington District geologists.

4.2.2 Overburden Drilling, Sampling and Testing

Fifteen (15) borings (C-04-1 to C-04-14 & C-04-5A) were drilled in 2004, primarily to obtain rock core samples for testing. Overburden was sampled in each boring using the Standard Penetration Test (SPT) method (2-inch slit spoon), in accordance with ASTM D 1586, with blow counts taken continuously. No undisturbed sampling was performed. Borings were drilled at the upstream and downstream sides of both abutments. Four (4) borings were drilled downstream of the dam in/near the right abutment, and two (2) were drilled upstream of the dam near the right abutment.

Of the four borings drilled in the right downstream area, one boring (C-04-5) was abandoned at a depth of 35.5 feet due to the presence of petroleum odors. This was encountered in a zone of weathered sandstone and shale. Drillers placed the auger cuttings into two (2) fifty-five (55) gallon drums, as noted on the field logs. A "slight petroleum-like odor" was noted on the drilling field log in a zone of silty clay (depth: 25.5 to 31 feet) near the ambient groundwater level of this boring. As a result, boring C-04-5A was drilled approximately 50-feet upstream of C-04-5. Similar to the right abutment, two (2) borings were drilled upstream of the dam near the left abutment, and three (3) borings were drilled just downstream of the dam near the left abutment. No borings were drilled in the river. Locations and graphic logs of these borings are shown in Exhibits II-1 and II-4, respectively.

Jar samples from split spoons were collected and were visually described using the Unified Soil Classification System (USCS), in accordance with ASTM D 2488. Natural moisture contents were also determined on most (173 out of 176) of the overburden samples. Sieve analyses were completed on approximately 15% of all jar samples, and representative samples of the fine-grained soil samples were tested to determine Atterberg Limits. No testing, beyond standard index testing to classify the soil types, was performed. These test results are included on the graphic logs in Exhibit II-4.

5 Rock Testing

For the 2005 rock testing program, all samples were taken from the 2004 drilling program and sample selections were done by Huntington District personnel. Sample preparation and testing was carried out by FMSM Engineers, Inc. of Lexington, Kentucky, an Army Engineer Research and Development Center (ERDC) validated lab, in accordance with the applicable provisions of the "Rock Testing Handbook," WES Geotechnical Laboratory Publication, March 1990.

The main goal of the 2005 testing program was to provide shear strengths and bearing capacities for the reanalysis of the dam.

TABLE II-1 Summary of Dover Dam Rock Strengths

	Cross Bed Shear	Shear Parallel to Bedding	Basic phi angle	Bedrock Dam Interface		E _{t50}	Unit
	Intact Peak	Natural Fracture Peak	Smooth Sawn Surface	Grout on Rock Peak	AllowableBearing	Elastic	Weight
	(\phi)	(\phi)	(\phi)	(\phi)	psi	Modulus	
_	(c)psi	(c)psi	(c)psi	(c)psi		(x10^6)	
	65	39	29	50	2191		168.5
Limestone	150 psi***	7 psi	0 psi	33 psi****		24.740	pcf
	64	28	26	50	522		148
Upper Sandstone	88 psi***	3 psi	0 psi	70 psi****		2.050	pcf
	46	26	21	50	829		159.7
Sandy Siltstone	20 psi***	2 psi	0 psi	60 psi****		2.970	pcf
	31	25	14	31	873		165.8
Siltstone	15 psi***	1.5 psi	0 psi	60 psi****		2.750	pcf
	29	19	12.5	30	300		161.5
Shale	5 psi***	.5 psi	0 psi	50 psi****		1.750	pcf
	19*						
Fault/Slickensided Joint*	0 psi						
		38					
Concrete Key Lift Joint**		Controlled by Rebar**					

Shear Parallel to Bedding when used with the key should be reduced by 50% due to strain incompatibility with the rebar

Sliding Shear Strength

5.1

Sliding shear strength is used to represent the shear strength of the rock where the direction of the shear is parallel to the discontinuity. The majority of the discontinuities in the foundation of Dover Dam are oriented nearly horizontal.

A total of forty-two (42) direct shear tests were run on core samples which represent natural fractures. Normal loads varied from 40 to 120 psi. Similar tests were also run on smooth-sawn samples to determine the basic phi angle of the materials (additional discussion on smooth-sawn sample testing in section below). The peak strengths of these natural fracture tests were plotted, and were taken into consideration along with the smooth-sawn tests to effectively establish an upper and lower bound of the appropriate values for sliding strength along open natural fractures in the foundation. The upper and

^{*}The cross bed shear strength assigned to the (Fault / Slickensided Joint) is the average of the basic phi angle for all of the materials except the Upper Sandstone.

The Upper Sandstone was excluded because it is not a component in the passive wedge of the 3 monoliths analyzed.

^{**}The cohesion value used in the concrete key is assigned by structural section and is not published here.

^{***}The cross bed shear cohesion was taken directly from the intact peak lower bound plot except cohesion was then reduced by 50 percent to account for scaling effects.

^{****}The cohesion was taken directly from the lower bound plot of the grout on rock peak except cohesion was reduced by 66 percent to represent portions in the monolith where the contact is not bonded.

lower bounds, the chosen natural fracture sliding strengths, and cohesion of the rock mass were chosen as follows:

- **Upper Bound**. The linear regression plot of the peak strengths was assumed to represent an upper bound of this sliding strength because it includes the resistance of both the basic phi angle of the material, and the additional resisting influence of the "second-order" irregularities within the sample itself. The second-order irregularities are normally at a higher angle than the "first-order" irregularities (or "i" angle) within the overall rock mass; therefore, the angle of the linear regression for these natural fracture peak strengths can be used as an upper limit of the natural fracture sliding strength envelope.
- **Lower Bound**. The plot of the smooth-sawn surfaces, without the influence of the first- or second-order irregularities, is assumed to represent the lower bound of the natural fracture sliding strengths. Post-peak (residual) natural fracture plots are not presented in this report since smooth-sawn surface tests were available.
- Rock Mass Sliding Strength. The rock mass shear strength along natural fractures is represented by the basic phi angle of the material plus the additional strengthening influence of "first-order" irregularities within the rock mass. The first-order "i" angle was chosen based on engineering judgment. As expected, the rock mass sliding strength line plotted between the upper and lower bounds described above. (A selection of plots and the associated shear strength data are included in Exhibit II-6.)

Cohesion. The linear regression plots of the natural fracture peak shear strengths are plotting at or near the xy intercept. The cohesion values used for design are based on engineering judgment, taking into account the apparent cohesion intercept at zero normal load and the characteristics of the natural fracture.

5.2 Cross Bed Shear Strength

Cross bed shear strength is used to represent the shear strength of the rock where the direction of the shear is not parallel to the bedding but crosses through the bedding. In the sliding stability analysis the cross bed shear strength of the rock is used to characterize the base of the passive wedge except where the foundation reports or exploration indicate faults or slickensided joints (see Photo II-1) are present along the base of the passive wedge, in these cases the base of the passive wedge is better characterized by the basic phi angle obtained from the smooth sawn surface shear strength.

A total of forty-five (45) direct shear tests were run on intact foundation rock at normal loads varying from 40 to 120 psi. Subsequent to failure at peak strength the tests were continued to obtain sliding resistance. The lower bound plot of the peak strength was used to characterize cross bed shear. The phi angle and cohesion were taken directly from the lower bound plot except cohesion was then reduced by 50 percent to account for scaling effects. The intact rock strengths selection was based on engineering judgment and in accordance with Corps guidance (EM 1110-1-2908).

5.3 Smooth Sawn Surface Shear Strength

Smooth sawn surface shear strength is used to represent a slickensided plane and to check the phi angle of the natural fracture (minus the first-order i angle).

A total of thirty (30) direct shear tests were run on sawn surfaces of foundation rock at normal loads varying from 40 to 120 psi. Typically the phi angle can be calculated from the plot of the peak shear stress, but the lab was unable to discern any peak shear stresses for the limestone or the upper sandstone, however post peak shear stresses were obtained for all rock types. To be consistent the post peak shear stresses for all of the rock types were used to calculate the phi angle, but instead of plotting a lower bound the phi angle is closer to the linear regression and any apparent cohesion plotted is ignored.

Photo II-1 Scanned photo from monolith 7 foundation report. The photo was taken from monolith 7 looking down stream at monolith 7A. Notice the bar that is resting on what is described as a fault. The fault or slickensided joint is dipping upstream.

5.4 Grout on Rock Shear Strength

Grout on rock shear strength is used to represent the interface of the monolith and the bedrock.

A total of forty-five (45) direct shear tests were run on sawn foundation rock surfaces bonded to grout at normal loads varying from 40 to 120 psi. The lower bound plot of the peak strength was used to characterize the contact of the monolith and the bedrock. The Phi angle and cohesion were taken directly from the lower bound plot except cohesion was reduced by 66 percent to represent portions in the monolith where the contact is not bonded. Of the three (3) vertical 1982-1983 gallery borings one (1) describes the

concrete to rock interface as intact with the remainder being open. The angled borings do not describe the condition of the concrete to rock interface.

5.5 Elastic Modulus

A total of thirty-eight (38) unconfined compression tests were performed on abutment bedrock samples. Axial and diametrical deformations were measured to allow derivation of elastic constants. The elastic modulus was derived from the slope of a line constructed tangent to the stress-stain curve at 50 percent of the peak stress.

5.6 Allowable Bearing Capacity

The allowable bearing capacity was calculated using Goodman's (Introduction to Rock Mechanics, page 311, Eq. 9.8) for ultimate bearing capacity and applying a factor of safety of 5. Goodman's equation uses the unconfined compressive strength, vertical joint spacing, monolith width, and intact rock Phi angle to calculate the ultimate bearing capacity. Goodman's equation was chosen over those given in EM 1110-1-2908 because it was more consistent, see exhibit II-6 for a comparison.

5.7 Failure Plane Selection

Multiple failure scenarios are shown in cross section with each monolith (see Exhibit No. 2) based on the stratification, location and orientation, frequency and distribution of discontinuities of the foundation material, and the configuration of the base. Each segment of the failure path is assigned a strength based on the material type, its condition and orientation. The angle of the base of the passive wedge was defined by the classical Coulomb passive failure plane equation (45- θ /2). Monoliths 5 and 7 show faults in the area of the passive wedge and are characterized using a smooth sawn surface shear strength. Monolith 17 shows no faulting in the passive wedge and therefore uses cross bed shear strength. The multiple failure options were then analyzed by the structural engineer, who selected the most critical potential plane of failure.

5.8 Unit Weight

The unit weight of each rock type was calculated from material leftover from the unconfined compressive tests. The specimens were prepared and tested in accordance with guidelines established in RTH 109-93. The test data from each rock type was averaged and the average is published in TABLE II-1.

6 Soil Characterization

Overburden characteristics are needed for soils found around the abutments and immediately upstream and downstream of dam monoliths. Soils in and around the abutments have been categorized as in situ soils, compacted backfill, rolled embankment, rock fill, and upstream north abutment slide backfill. Soils placed immediately upstream and downstream of dam monoliths have been termed compacted backfill. The

aforementioned categorizations are consistent with naming conventions shown on project as-built drawings.

Overburden characteristics are needed for two design purposes for this project. First, the soils along each downstream abutment offer resistance to sliding of monoliths 1-6 and 16-23. Therefore, engineering properties of these soils are needed to determine the amount of resistance they provide. Secondly, fills placed upstream of abutment monoliths add both vertical and horizontal stresses on the upstream face of abutment monoliths. Engineering properties have been selected to quantify these stresses for sliding stability analyses. The following discussion explains the selection of engineering properties of these materials.

Engineering properties for all known soils at this project have been selected using 2004 drilling and testing data, published correlations, and engineering judgment based on experience. At-rest earth pressure coefficients for use in structural analyses have been selected based on empirical relationships to shear strength parameters for granular soils, and published correlations for cohesive soils as shown in Table II-2. Tables II-3 and II-4 were utilized for correlating soil properties at the project based on SPT blow counts (N-values) obtained during drilling. Table II-3 below was used for cohesive soils (>50% passing the #200 sieve), while Table II-4 on the following page was used for granular (cohesionless) soils.

Table II-2 – Typical Coefficients of Lateral Earth Pressure At-Rest (from Clough and Duncan, 1991)

Coefficient of Lateral Earth Pressure At-Rest (K _o)									
Soil Type	Φ _f (deg)	OCR = 1	OCR = 2	OCR = 5	OCR = 10				
Loose Sand	33.5	0.45	0.65	1.10	1.50				
Medium Sand	36.5	0.40	0.60	1.05	1.55				
Dense Sand	40.5	0.35	0.55	1.00	1.50				
Silt	29.5	0.50	0.70	1.10	1.60				
Lean Clay, CL	23.5	0.60	0.80	1.20	1.65				
Highly Plastic Clay, CH	20.5	0.65	0.80	1.10	1.40				

Table II-3 – Approximate values of undrained shear strength for cohesive soils based on SPT blow count N-values (from Terzaghi and Peck, 1967)

Soil Consistency	SPT N	S _u (psf)		
Very Soft	< 2	< 250		
Soft	2 - 4	250 - 500		

Medium	4 - 8	500 - 1000
Stiff	8 - 15	1000 - 2000
Very Stiff	15 - 30	2000 - 4000
Hard	> 30	> 4000

Table II-4 – Empirical values for Φ , D_r , and unit weight of granular soils based on the standard penetration number with correction for depth and for fine saturated sands (from Bowles, 1968)

Description	Ve	ry loose	Loose	,	Medium	Dense	I	'ery dense
Relative density D,	0	0.	15	0.35	0.	65 0	.85	1.00
Standard penetra- tion no. N		4	1	 10	3	100	! 50	
Approx. angle of internal						4.		
friction φ°† Approx. range	25°-30°	27-	-32°	30–35	5° 35-	-40° 38- 	43°	
of moist unit weight, (y) pcf	70	⊢ 100‡	90–113	,	110-130	110–140		130-150

[†] After Meyerhof [9]. $\phi = 25 \div 0.15D_r$, with more than 5 percent fines and $\phi = 30 \div 0.15D_r$, with less than 5 percent fines. Use larger values for granular material with 5 percent or less fine sand and silt.

6.1 General

Extents of soils have been determined and correlated from as-built project drawings and construction notes contained in Dover Dam Periodic Inspection Report No. 1, as well as 2004 LRH boring data. Project As-Built drawings show that the original ground surface on the right abutment sloped riverward at about 1V:2H from old State Road No. 8 (Sta. 1+50) to the former Ohio Canal (Sta. 3+00) at about El. 879, and continued at a gentle slope to the river. As-built drawings also show a depth of approximately 30 feet to rock below these cohesive, in situ soils. Original dam construction (started 1935) included placement of fill, termed rolled embankment in project as-built drawings, over these in situ soils to current elevations. Rolled embankment was placed to a 1V:1.5H slope from the top of the right abutment (El. 933.7), to the middle of Monolith 6 at El. 885. Two 9.5 foot wide berms interrupt the slope at El. 918.3 and El. 902. Therefore, about 18-20 feet of rolled embankment fill was placed in the right abutment area.

Due to a landslide in the upstream right abutment during construction, in situ soils were removed to rock and replaced with rolled embankment. Twenty to thirty feet of rock fill consisting of sandstone from an upstream quarry was placed over the rolled embankment to current elevations. The original ground surface of the left abutment sloped riverward at about 1V:3H. Approximately 20 feet of in situ soil was removed and graded to 1:2 and 1:3 slopes with benches at El. 902 and El. 885. Immediately downstream and upstream of the dam monoliths starting at the top of rock and monolith contact point and rising at a

[‡] It should be noted that excavated material or material dumped from a truck will weigh 70 to 90 pcf. Material must be quite dense and hard to weigh much over 130 pcf. Values of 105 to 115 pcf for nonsaturated soils are common.

1:1 slope to the existing ground, is of compacted backfill. An exception to this is uncompacted backfill on the downstream side of monoliths 20 and 21.

Based on as-built drawings and confirmed by 2004 boring data, the soil column along the downstream right abutment at Monolith 5 consists of in situ soils from the top of rock approximate El. 867 to El. 883, and rolled embankment from El. 883 to El. 902. Upstream of Monolith 5 consists of US north abutment slide backfill from top of rock to El. 883, rolled embankment from El. 883 to El. 894, and rock fill from El. 894 to El. 915. Compacted backfill is located immediately upstream and downstream of the dam at the right abutment from the top of rock to the existing ground surface. Along the left abutment at Monolith 17, the soil column is believed to consist of in situ soils from top of rock to the ground surface (El. 886). Borings drilled in 2004 in the left abutment downstream of the dam (C-04-8, 9, and 11) were located in areas of uncompacted backfill. See Exhibit II-5 for sections showing soil stratigraphies at Monoliths 5 and 17. Engineering properties for all of these materials were needed for stability analyses and for evaluating construction alternatives. Table II-5 below lists selected engineering properties for all these soils.

		Short-term Condition			Long-term Condition				
Material	Ko	Y sat (pcf)	Y mst (pcf)	Φ (deg)	S _u (psf)	Y sat (pcf)	Ymst (pcf)	Φ (deg)	S _u (psf)
Rock Fill	0.45	130	120	35	0	130	120	35	0
*Compacted Backfill	0.45	125	120	35	0	125	120	35	0
Rolled Embankment	0.45	125	120	33	0	125	120	33	0
In situ soils	0.70	128	125	0	1500	128	125	31	0
[†] US North Abut. Slide Backfill	0.55	120	110	28	0	120	110	28	0
Uncompacted Backfill	0.60	125	120	0	800	125	120	30	0

Table II-5 - SOIL PROPERTIES

6.2 Existing Soils

6.2.1 In Situ Soils

Borings C-04-5, C-04-5A, and C-04-6, located on the right abutment, show that soil samples taken below El. 883 generally contain 60-75% clays and silts, 10-25% sand, and

^{*} Compacted backfill is located adjacent to upstream and downstream sides of monoliths #5 & #17 and behind the right training and retaining walls. + See Periodic Inspection Report No. 1, Appendix IV, pg. 13, Section 8. Construction Notes.

5-15% gravel, by weight. In situ soils found along the left abutment in boring C-04-10 generally contain 50-60% silt and clay, 15-20% sand, and 20-25% gravel, so they are generally classified as sandy clays with gravel.

These soils generally exhibit medium plasticity with liquid limits of 35-40% and plasticity indices of 21-23 (See Exhibit II-4 for Atterberg Limits test data). Penetration resistances observed during drilling are indicative of a stiff consistency (N-values of 8-20 blows/foot). N-values within the anticipated in situ soil layer in borings C-04-5A, 5, 6, and 10 averaged 11 to 16 blows/foot.

As noted previously, no undisturbed sampling was performed. Published correlations were reviewed to obtain approximations of the at-rest earth pressure coefficient and undrained shear strength parameter. These correlations are shown in Tables II-2 and II-3 and were used to select the parameters shown in Table II-5. Engineering judgment and past testing results for similar soils from other District projects was used to determine the drained shear strength parameter.

Using Table II-2, in situ soil was assigned an at-rest earth pressure coefficient (K_o) of 0.70. This is considered reasonable because although consolidation testing was not performed it is estimated that these soils, which fall under the lean clay (CL) category in the table, are overconsolidated. An overconsolidated soil is defined as a soil whose present effective overburden pressure is less than that which the soil experienced in the past. Since overlying soils were removed from the present in situ soils of the left abutment during construction, these soils are considered overconsolidated. Due to a landslide during construction, the in situ soils upstream of the right abutment were removed and backfilled with granular soils. The downstream right abutment in situ soils were covered with about 20 feet of granular rolled embankment during construction. Project in situ soils are estimated to fall between an overconsolidation ratio (OCR) of 1 and 2 in Table II-2. Using Table II-2, a lean clay with an OCR midway between 1 and 2 would have a value of K_o =0.70.

As noted previously, N-values for in situ soils averaged 11 to 16 blows/foot.; 11 blows/foot is roughly in the middle of the N-value range of stiff clay in Table II-3. As a result, in situ soil was assigned an undrained shear strength value of 1500 psf, which is midpoint in the range of 1000 to 2000 psf as shown in Table II-3 for stiff clay.

6.2.2 Compacted Backfill

Compacted backfill was placed between excavated soil and the dam monoliths on both their upstream and downstream sides, with the exception of the downstream side of monoliths 20 and 21. Compacted backfill was also placed between excavated rock and structural concrete for the right retaining (upstream) and training (downstream) walls.

As previously noted, no project specifications are available. As a result, little is known of the composition and requirements for compacted backfill. The 2004 borings (C-04-5A and C-04-6) show that in areas of compacted backfill, the soils typically contain approximately 15% fine-grained materials (% passing the #200 sieve) with wide

variations in sand and gravel proportions. The natural moisture contents of these soils ranged from 5 to 12%. Based on 2004 boring data, compacted backfill is characterized by about 15% fines, whereas in situ soils contain about 50-70% of fines. Compacted backfill is generally classified as silty sands and gravels.

Areas of compacted backfill in borings C-04-5A and C-04-6, averaged N-values of 20-25 blows/foot, correlating to a medium dense granular soil in Table II-4. By using Table II-4, compacted backfill with average N-value of 20 blows/foot was assigned an internal angle of friction (Φ) of 35° and moist unit weight of 120 pcf, which correspond to Φ and unit weight values midway between N-values of 10 and 30 blows/foot. Effective shear strength parameters and unit weights for compacted backfill and rolled embankment were estimated to be relatively similar based on blow counts (N-values) and gradations. Table II-5 lists all selected parameters for compacted backfill soils.

6.2.3 Rolled Embankment

Rolled embankment was placed over in situ soils in the downstream right abutment and upstream left abutment, as well as over the slide backfill in the upstream right (north) abutment. The exact composition and compaction placement procedures for rolled embankment are unknown. 2004 borings show that areas of rolled embankment soils typically contain approximately 15% of fine grained materials and varying amounts of sand and gravel percentages. Rolled embankment is generally classified as silty sands and gravels. Areas of rolled embankment in borings C-04-5 and 5A averaged 16 blows/foot. An area of rolled embankment in boring C-04-4 shows about 5% fines and average of 20-25 blows/foot. These correlate to a medium dense granular soil and though similar in gradation to compacted backfill they were assigned lower strength values due to lower blows counts. By using Table II-4, rolled embankment with average N-value of 16 blows/foot was assigned an internal angle of friction (Φ) of 33° which corresponds to a Φ value roughly one third of the way between the Φ value range of 30° to 40° associated with the N-values range of 10 to 30 blows/foot.

6.2.4 Upstream (US) North Abutment Slide Backfill

As-built construction notes, contained in Periodic Inspection Report No. 1, state that due to heavy rains during construction a slide developed in the right upstream abutment. This material was removed to rock and replaced with "rolled embankment." This slide backfill is approximately 10 feet thick, and lies below 10 to 30 feet of rock fill. This area has been differentiated from rolled embankment due to significantly lower blow counts (N-values) encountered during 2004 drilling. There is no information available in regards to the placement procedures for this material.

Blow counts in boring C-04-14 in the area of this slide backfill averaged 8 blows/foot. This boring was located behind the upstream right retaining wall. Upstream north abutment slide backfill contains less than 15% fines and can be characterized as poorly graded sands with gravel. By using Table II-4, US north abutment backfill with average N-value of 6 blows/foot was assigned an internal angle of friction (Φ) of 28° which

corresponds to the lower end of the blow count range for loose granular soils (N-value= 4 to 10).

6.2.5 Rock Fill

Rock fill was placed over slide backfill to the existing grade in the upstream right abutment, most likely due to steep slope geometry and prior slope failure during construction. The rock fill consists of sandstone and limestone from required excavation and ranges from 10 to 30 feet in thickness. Blow counts in the area of rock fill varied, but typically averaged greater than 50 blows/foot. Its assigned shear strength value was based on typical friction angles for angular rock.

6.2.6 Uncompacted Backfill

Uncompacted backfill was placed between excavated soil and the left training wall and between excavated soil and structural concrete on the downstream side of Monoliths 20 and 21. This material was encountered in borings C-04-9 and C-04-11, and generally consisted of 50-60% fines (silts and clays) and N-values that averaged 6-8 blows/foot, correlating to a medium consistency. Uncompacted backfill is similar in soil classification to the in situ soils, and is generally characterized as sandy clays with gravel.

By using Table II-3, uncompacted backfill with N-value of 6 blow/foot was assigned an undrained shear strength value of 800 psf, which roughly midpoint in the range of 500 to 1000 psf as shown in Table II-3 for medium consistency (N-value= 4 to 8). Using Table II-2, uncompacted backfill was assigned an at-rest earth pressure coefficient (K_o) of 0.60, corresponding to lean clay (CL) with overconsolidation ratio (OCR) of 1. Table II-5 lists all selected parameters for uncompacted backfill soils.

6.3 **Groundwater Conditions**

Groundwater levels found during the 2004 drilling program generally coincide with the river elevation just above the soil and bedrock interface, which rises in elevation with distance from the river. Groundwater readings were taken upon completion of each boring; 24-hours readings were recorded in about half of the borings. Installation of several piezometers to evaluate groundwater levels in the abutments is planned following proposed FY-07 undisturbed drilling.

7 Soil Design Considerations

7.1 **General**

Engineering properties of soils in both abutments were determined for use in stability analyses for the recommended plan. As stated previously, no shear strength testing was

performed on soil samples obtained during the 2004 drilling program. Engineering properties for all known soils at this project have been selected using 2004 drilling and testing data, published correlations involving SPT blow counts, and engineering judgment. At-rest earth pressure coefficients for use in structural analyses have been selected based on empirical relationships to shear strength parameters for granular soils, and engineering judgment for cohesive soils. Six (6) borings are proposed in FY-07 to obtain undisturbed soil samples for testing in order to better define soil strength parameters and stratigraphies necessary for completion of analyses during the design phase of this project.

7.2 **Abutment Soil Stability**

Fill soils placed just upstream and downstream of abutment monoliths enhance monolith stability. As a result, it is necessary to assess the potential for loss of these fills due to slope instability. Slope stability calculations have not been performed during this phase of the project because possible modification of the existing stilling basin and associated training walls which may affect the future abutment slope configurations have not been determined. These will be determined in the design phase following hydraulic physical modeling of the dam by the U.S. Army Engineer Research and Development Center's (ERDC) Coastal and Hydraulics Laboratory.

In reviewing the abutments soils, the following observations have been made:

- Abutment slopes have been stable since completion of construction, spanning a period of about 70 years.
- Abutment fill soils are generally pervious and are likely to provide adequate drainage to prevent slope failures during drawdown following high pools. Exposed impervious in situ soils located on the downstream left abutment are not believed to be pervious due to their percentage of fines (50-60%); however, downstream left abutment slopes are at a 1% grade from the top of the training/retaining wall to El. 885.5, 1V:4H to a berm at El. 902 and 1V:2H slope to the south end of the dam.
- The pool of record (El. 907.35) and subsequent drawdown did not cause slope failures in these areas.
- The upstream right abutment has the steepest slope, but contains approximately 20 feet of rock fill and is buttressed by a retaining wall founded on rock.

For these reasons, it is anticipated that the upstream abutment slopes are stable. However, data from proposed hydraulic physical modeling at ERDC's Coastal and Hydraulics Laboratory is needed to define hydraulic conditions during a PMF level event. Abutment soil stability analyses will be completed during the design phase.

7.3 **Parapet Wall**

Due to pervious subsurface conditions in the upstream right abutment area, underseepage concerns with the proposed upstream parapet wall along its alignment surrounding the

parking area were evaluated. Due to the size and density of these granular soils (poorly graded sands and gravels), piping of material and consequential instability of the wall foundation is not a concern, and thus formal seepage calculations were not performed. A toe drain is proposed to intercept potential seepage and decrease uplift pressures that may damage the asphalt pavement on the dry side of the wall.

The proposed parapet wall on the right abutment is a typical I-wall except for the sub grade portion which is proposed to be founded on drilled H-piles encased in concrete spaced on 6 feet centers. The use of sheet piling may not be practical in this area due to the dense granular soils. Blow counts from boring C-04-4 located near the center of the adjacent parking area ranged from 18-39 blows/foot from the ground surface to a depth of 15 feet and averaged 8 blows/foot from a depth of 15 feet to bedrock.

The proposed parapet wall on left abutment follows along the upstream side of abutment monoliths before heading upstream, paralleling the existing abandoned railway line/walking trail. The elevation of the trail in this area is roughly El. 934 and thus the wall height will be about 4 feet above the existing ground surface. A handicap access ramp is proposed to allow access along the trail where the I-wall crosses to tie into high ground. The random fill required for construction of this ramp will be purchased from a commercial source or possibly onsite excavations.

Borings C-04-13 and C-04-14 drilled along the southeast edge of the trail at the end of the left abutment showed fairly shallow depths to bedrock. An approximate 5-foot thick stratum of heavily weathered shale was encountered at depths of 14 feet and 13 feet in borings C-04-13 and C-04-14, respectively. This is underlain by hard sandstone that extends to approximately El. 890. The overburden in these holes is predominately silty clays with sands and gravels, and exhibited an average N-value of 8 blows/foot correlating to medium stiff to stiff in terms of soil consistency. Underseepage does not pose a threat due to the short wall height and depth of sheet piling for the I-wall. Slope stability was not a concern as the ground slopes at approximate 1V:5H toward the river for about 20 feet from the wall centerline. From there the slope changes to 1V:2.5H. As stated previously, analyses will be performed during the design phase to verify stability.

7.4 State Route 800 Gate Closure

Foundation conditions for the proposed State Route 800 gate closure are unknown at this time. Conditions must be determined to properly design the abutment monoliths and sill as well as prepare plans and specifications. Borings C-04-1 and C-04-2, drilled about 25 feet to the north of the roadway centerline, indicate a relatively shallow bedrock depth beneath the road surface. However, project as-built drawings show that rock dips steeply toward the river. Drilling consisting of overburden sampling and rock coring is planned for the gate closure monolith locations.

7.5 **Streambank Erosion Protection**

7.5.1 Stone Slope Protection

Bank protection is needed to protect park facilities, SR 800 and abutments against erosion from high flow velocities during significant high water events, which could result in slope instability. High flow velocities during a potential PMF event could undermine the stability of downstream abutment soils which provide resistance to sliding of adjacent monoliths.

The feasibility-level design is to replace the existing riverbank stone slope protection downstream of the stilling basin with graded 36-inch top size stone since the existing stone is estimated to be undersized for a PMF event. This conventional stone slope protection will consist of excavation of existing stone and soil to a stable geometry, installation of a geotextile, and then placement of stone to a thickness of approximately one and a half times its top size or approximately 4.5 feet. The stone shall be keyed in at both the toe and top of the protection and end transitions to prevent outflanking.

As stated previously, hydraulic conditions during a PMF event are unknown at this time but will be determined following hydraulic modeling using scaled physical replicas of the dam by ERDC. Extent and technique of bank treatment will be verified during the design phase. See Appendix C, Tab I, Hydrology and Hydraulics for more detail.

7.5.2 Environmental Design Consideration

The proposed project lies within the range of the clubshell mussel (*Pleurobema clava*), a Federally-listed endangered species. Existence of mussel populations are unknown at this time but will be determined prior to construction following commissioned mussel surveys in partnership with the U.S. Fish and Wildlife Service. Alternative approaches to bank protection are available that would not significantly affect the feasibility or cost assumptions of this report should mussel populations affect the current design. As stated previously, extent and technique of bank treatment will be verified during the design phase. See Section 2.5.3 (Wildlife and Endangered Species) of the main report for more detail.

8 Uplift

The original design assumed uplift of full reservoir head at the heel varying linearly to full tail water head at the toe, but the uplift pressure was assumed to be acting on only 40% of the base. Current guidance assumes uplift acts over 100% of the base and the only reduction allowed is at the line of the drains, called drain efficiency. Drain efficiency represents a reduction in uplift pressures acting upon the base of the dam due to the interception of charged discontinuities by the drains. Current Corps guidance for dams with drains assumes a bi-linear distribution, full reservoir head at the heel varying linearly to a percent reduction at the line of the drains then to full tail water head at the toe (see Figure II-1).

Figure II-1 (from EM 1110-2-2100)

For the 1977 stability reanalysis, the drains at Dover were assumed to be nonfunctional, for this current Evaluation Report it was decided to take a fresh look at the drainage curtain and drain efficiency.

The reduction in uplift due to the drainage curtain (drain efficiency) is based on many factors, some of these include: top of drain elevation, drain spacing, drain depth, and angle of the drain. The following paragraphs compare and contrast the drains at Dover Dam to the ideal, modern drainage system design.

A modern concrete gravity dam is typically designed with two galleries, an upper gallery to facilitate operation of the dam's gates, etc., and a lower inspection (or "drainage" or "grouting") gallery from which the upstream grout curtain and the downstream drainage curtain are constructed, and where uplift pressures are monitored through instrumentation. The ideal drainage curtain would be located in an inspection gallery near the upstream face, and as near the rock surface (in elevation) as feasible to provide the maximum reduction in overall uplift. By locating the inspection gallery at the lowest possible elevation, the drains are more permeable, and by locating it near the upstream face, the reduction in uplift provided by the drains is optimized. Dover Dam has 22 drains located in the Dam's single (operations) gallery in monoliths 4 through 15 with top

of drain elevations of 882.25 and 886.25 (see Table II-6.). It should be noted that drain 11 was not drilled into bedrock. The drains in monoliths 7 through 15 intercept bedrock on the downstream bottom of the concrete key, and their top elevations are 53.5 feet above bedrock. Monoliths 4 through 6 (which have no key) have top of drain elevations that average 29.5 feet above bedrock. Due to their location high up in the operations gallery, the drains have a greatly increased head to overcome to reduce uplift. Also, the drains have not been well maintained, in that they have only been cleaned once, during the flood of 2005, by high pressure jetting. The uplift cells were also cleaned at this time in a similar fashion. The uplift-cell data at Dover Dam is questionable. The earliest available records of uplift-cells readings are from a flood event of (elevation 905.0) July 12 of 1969, some 28 years after the dam was constructed. Up until January of 2005 when Dover Dam reached a pool of 907.3 (current pool of record) the 1969 flood was the pool of record. During the 1969 flood, uplift cell number 8 stayed dry, but during the 2005 flood it gave readings near 100% theoretical uplift, and, after being cleaned during the 2005 flood event, this cell gave readings above 100% theoretical uplift. Uplift cells 4 and 5 both showed higher readings in 2005 than in 1969 but not as dramatic. Uplift pressure plots from the 1969 and 2005 flood can be found in Exhibit II-7.

Drains in modern concrete gravity dams are from 3 to 5 inches in diameter, typically spaced at 10-foot intervals, with depths up to 70% of the height of the dam, and are drilled at a slight angle (typically downstream) to increase the likelihood of intercepting near-vertical, open bedrock joints—the most common conduits to the reservoir in relatively flat-lying sedimentary bedrock strata. The drains at Dover are vertical, and are therefore much less likely to intercept vertical bedrock joints. Dover's drains have an average spacing of 20.1 feet and a maximum spacing (between drains 1 and 2) of 35.8 feet; on average, the drains are two times the currently recommended spacing, and in some areas over three times.

Drains must be well maintained to ensure continued functionality. In a modern dam, a maintenance plan would be developed to clean the drains by over-reaming or re-drilling to ensure elimination of mineral crusts, algal slimes, and other blocking materials on a regular interval. The drains at Dover are not considered "well maintained" because they have only been cleaned once in the dams life time, in 2005 (by high pressure jetting), but not followed up with a down-hole imagery to confirm the results.

Drain efficiency. Funding has not been made available to devise or execute an investigative program to estimate the drains' actual contribution to uplift reduction over the base of the dam. If funding was made available, the task would be difficult because the drains at Dover are (elevation 882 and 886) 17 to 21 feet higher than the typical pool elevation of 865.0 and therefore they don't start functioning as drains until the pool is higher than their top elevation. Maintenance of the drains is discussed above. Also, no down-hole imagery has been run down the drains to determine the actual degree to which incrustation has impacted the drains' intersections with bedrock discontinuities. However, as stated earlier the drains were cleaned using high pressure water-jetting in 2005, and 9 of the drains flowed during the pool of record. Therefore, it was deemed prudent to assume that the drains provide some minimal uplift reduction. For this phase

of study, a 5% drain efficiency for each drain has been chosen for use in the structural analyses; therefore a monolith with two (2) drains would have 10% drain efficiency, and so on.

		Top of	Concrete to	Drain Hole Depth	Drain in	
	Drain	Drain	Rock Contact	From Top of	Concrete	Drain in
Monolith	Number	Elevation	Elevation	Drain (feet)	(feet)	Rock (feet)
4	1	882.25	865	56.8	17.25	39.55
5	2	882.25	848	68.6	34.25	34.35
6	3	882.25	849	69.5	33.25	36.25
	4	882.25	830	69.8	52.25	17.55
7	5	882.25	830	69.7	52.25	17.45
	6	882.25	830	70.5	52.25	18.25
8	7	882.25	830	70.1	52.25	17.85
	8	882.25	830	69.1	52.25	16.85
9	9	882.25	830	69.9	52.25	17.65
10	10	886.25	830	72.7	56.25	16.45
	11	886.25	830	50.5	56.25	-5.75
	12	886.25	830	73.8	56.25	17.55
11	13	886.25	830	73.0	56.25	16.75
	14	886.25	830	73.7	56.25	17.45
12	15	886.25	830	71.7	56.25	15.45
	16	886.25	830	71.5	56.25	15.25
13	17	886.25	835	70.0	51.25	18.75
	18	886.25	835	67.5	51.25	16.25
14	19	886.25	835	74.1	51.25	22.85
	20	886.25	835	71.8	51.25	20.55
15	21	886.25	835	70.0	51.25	18.75
	22	886.25	835	68.5	51.25	17.25

Table II-6 Foundation Drain Data

9 Effect of Anchors on Uplift

The remediation at Dover Dam will require significant anchoring in the spillway and apron for stabilization. The procedure of anchoring will introduce grout into the foundation in quantities that cannot be predetermined. This grout in the foundation can, if added at the right location, help the grout curtain reduce the permeability at the heel, but if injected at or downstream of the drains, such as the multiple rows of anchors needed in the apron, can cause a build up of pressure under the foundation. For the level of study appropriate for this Evaluation Report the drain efficiency will be reduced to 0 percent in those monoliths with anchored aprons, but as part of the Design Document Report, (DDR) the anchoring system of each monolith will be evaluated and the drain efficiency reduced, if deemed appropriate. The anchoring system will be evaluated based on the following parameters:

- 1) Number of anchors per monolith
- 2) Location in the foundation of each anchor

- 3) Diameter of bore hole
- 4) Grout penetration
- 5) Monolith width

For design purposes, the monolith foundations will be divided into zones depending upon the degree to which grouted anchors would influence the drain efficiency in that particular area of the foundation. The zones are depicted in Exhibit No. 10. Grout penetration around the anchors is estimated at 8 inches. A drain efficiency reduction factor is calculated for each zone based on the number of anchors, bore hole diameter, grout penetration, and monolith width. Subsequently these per zone reductions (if any) are combined to determine the total reduction for the entire monolith. This percentage value is then applied to the originally assumed drain efficiency to establish the appropriate reduced total efficiency for the monolith.

10 Breach Assumptions

Some of the hydraulics analyses performed for this study required assumptions of the size of breach which might occur during failure. This depends upon several factors: the founding lithology; the depth of the critical sliding plane below the concrete-rock contact, the lateral continuity of open bedding planes and structural discontinuities, and their likelihood of intersection with adversely oriented joints. Based upon the current understanding of the bedrock foundation, it was determined that sliding would occur in the spillway section and could initiate over as little as two to three monoliths, but would quickly spread to include the total width of the spillway due to the highly erodible nature of the shale and siltstone below the limestone. The shale has an average RQD of 51 (see Exhibit II-6

11 Anchor Designs

The anchors needed for stabilizing Dover Dam range up to 61-strand. The project's design currently calls for twenty seven (27) multi-strand anchors and one hundred forty (140) 1-3/8" bar anchors. These anchors are only needed in the spillway monoliths and the apron.

11.1 **Corrosion Protection**

Because of the serious consequences of failure and the expected service life (50+ years), corrosion protection for the anchors will be Class I, Encapsulated Tendons, as described in the 2004 Post-Tensioning Institute, RECOMMENDATIONS FOR PRESTRESSED ROCK AND SOIL ANCHORS. The tendons shall be 0.6" diameter, 7-wire pre-stressed bare strand throughout the bond length with corrosion inhibiting grease and

polypropylene extruded sheathing throughout the stressing length. The anchors shall be fully encapsulated with corrugated HDPE. The 10" corrugated HDPE shall be 90 mil minimum thickness, and all smaller diameter corrugated HDPE to be used for the anchors shall be 60 mil minimum thickness.

11.2 Anchor Depth Calculation

"The anchor depth is taken as the anchor length necessary to develop the anchor force" required for stability" (EM 1110-1-2908, 30 Nov 94). Simply stated this is the depth below the failure plane at which the potential rock mass failure cones start. For the Dover DSA Project these cones are assumed to start at the mid-point of the bond zone. EM 1110-1-2908 gives multiple formulas for calculating anchor depths, based on the rock mass conditions. There are two formulas given for competent rock that incorporate rock mass cohesion, a single anchor in competent rock (formula 9-1) and a row of anchors in competent rock (formula 9-2). There are three formulas given for fractured rock that incorporate the weight of the rock mass, a single anchor in fractured rock (formula 9-4), and a row of anchors in fractured rock (formula 9-5). Regardless of the condition of the rock mass, there is only one formula for multiple rows of anchors (formula 9-3) and it uses only the weight of the rock mass for the resisting force. The anchors on the Dover DSA Project will be designed on a monolith-by-monolith basis. All of the anchored monoliths will have multiple rows of anchors. Lessons learned from previous anchoring projects show that using formula 9-3 can give anchor depths that are unreasonably long and extremely difficult to construct (see Bluestone Dam example, length 535 feet, in figure II-2). Accepting the lengths required by this formula, the hole alignment specifications would have to be written such that the bore hole could only vary 0.75 of a foot for every 100 feet drilled to ensure that the borings do not intercept. The design team therefore decided to look at other methods of calculating anchor depth which would incorporate only the weight of the rock mass as the resisting force. The chosen methodology, described below and previously applied to the Bluestone DSA project, will be used for the Dover Dam anchors. Stability is analyzed for each monolith individually; therefore, the anchors can be evaluated as a system, on a monolith by monolith basis. A system of anchors can be further broken out into groups when the system of anchors performs more than one function, such as 45 degree anchors to resist sliding and vertical anchors for overturning.

Figure II-2 (an example of anchor embedment calculated for the BluestoneDam DSA project using EM 1110-1-2908, 30 Nov 94, formula 9-3, the 45 degree anchors have a total length of 535 feet)

Embedment depths can be designed for a group of anchors by totaling the forces within a group, and using formula 9-4 (single anchor in fractured rock) for each group. Using this approach, the Bluestone monolith depicted in figure II-2 would have an embedment length of only 40 feet below the failure plane for the vertical anchors and 66 feet for the 45 degree anchors. The embedment lengths are checked by creating a 3-D Micro Station drawing of the cones and ensuring that the weight of the cones, using the buoyant weight of rock, equals the force the anchors. The tips of the cones start at the midpoint of the bond zones and go out at 45 degree angles, the cones are constrained at monolith boundaries and failure planes. Also, the 45 degree anchor cones, are stopped at the end of the monolith on the downstream side (see Figure II-3). The volumes are calculated by merging the cones in Micro Station. The resisting weight of the cones is calculated by multiplying the volume by the buoyant weight of rock. When looking at multiple groups of anchors, the cones from each group can and will often overlap, the rock in this overlap

area can only be used for one group of anchors and must be subtracted from the other group. The design goal is that the weight of the cones will be at least 1.3 times the force they are opposing. For Dover Dam monolith 7 this methodology gives a resisting weight of 1.8 times the force of the vertical anchors and 2.7 times the force of the 45 degree anchors.

Figure II-3

11.3 **Bond Length Calculation**

Anchor bond length calculations concentrate on the grout to rock bond and not the grout to tendon bond. According to EM 1110-1-2908, 30 Nov 94: "Experience and numerous pull-out tests have shown that the bond developed between the anchor and the grout is

typically twice that developed between the grout and the rock." Bond lengths are calculated by using formula 9-6a from EM 1110-1-2908, and vary depending upon hole diameter, grout-to-rock bond strength, and actual loading to be applied. The working bond strength is a weighted average calculated from the material just above and below the embedment depth. At this time no small scale anchor bond pull out tests have been conducted. The grout-to-rock bond strength used for this level of design comes from published strengths in the PTI manual and engineering judgment. The diameter of the hole is dependent on the number of strands and the type of corrosion protection each anchor uses. Bond lengths will be designed as appropriate using formula 9-6a, but the design will ensure that the minimum bond length for anchors is in accordance with the PTI manual recommendations of 15 feet for strand and 10 feet for bars.

12 Future Explorations and Investigations

12.1 **Rock**

To complete a Detailed Design Report (DDR) additional subsurface exploration and lab testing is needed to adequately characterize the valley bottom, both at the heel and in the apron and apron toe also concrete samples from the dam will be needed, so accurate concrete shear strengths can be assign to the reinforced key and the mass concrete of the dam . Any new features such as anchors, downstream cutoff walls and gate closures that may be a part of the Dover DSA project will also be added to the exploration and testing program.

12.2 **Soil**

Additional subsurface information is needed to adequately characterize soil stratigraphies and better define the engineering properties of these soils. The designed compositions and placement procedures of in situ project soils and fills are unknown due to limited asbuilt drawings and no project specifications. The 2004 boring locations were such that they did not provide adequate data for in situ soils and compacted backfill of the downstream left abutment area. All borings performed downstream of the left abutment (C-04-8, 9, and 11) were performed in uncompacted backfill as denoted in as-built drawings. Boring C-04-11 located just downstream of Monolith 20, is in an area labeled as uncompacted backfill on as-built drawings. Both borings C-04-8 and 9 are located in uncompacted backfill behind the left downstream retaining wall. Six (6) borings are proposed in FY-07 to obtain undisturbed soil samples for testing. Following drilling, piezometers will be installed in several holes to monitor groundwater conditions in the downstream abutments.

12.3 **Seismic**

A site and structure specific seismic evaluation will be completed as part of the DDR.

EXHIBIT II-1

BORING LOCATION PLAN

EXHIBIT II-2

ROCK PROFILES AND SECTIONS

POTENTIAL FAILURE PLANE SEGMENTS SLIDING FAILURE MODES FAILURE PLANE FOLLOWS SEGMENTS: Stability factor analysis shows adequate factors of safety. NOTES: 1. Segment identified on cross section with solid line. SHEAR STRENGTH PASSIVE WEDGE FAILURE PLANE ANGLE 2. Analysis of failure plane performed by EC-DS. SEGMENTS SEGMENT DEFINITION 3. Segment B1-C1 assumed horizontal. A-B1, A-B2, A-B3 Tension Crack 4. The angle of the base of the passive wedge was defined Concrete on Rock by the classical Coulomb passive failure plane equation (45 - ϕ /2). C1-D1,C2-D2,C3-D3 Fault (as described in foundation report) 19 35.50 B2-C2 39 Limestone B3-C3 Shale 19 1.5 Shale Siltstone Siltstone/Sandy Limestone WORKING BOND STRENGTH N/A psi ALLOWABLE BEARING CAPACITY 2191 psi 300 psi 873 psi 829 psi ELASTIC MODULUS (x 10 ^ 6) 24.74 1.75 2.75 2.97 UNIT WEIGHT 168.5 pcf 161.5 pcf 165.8 pcf 159.7 pcf C-04-6 902.09 N 326580.98 E 2301918.29 900 900 FLOW C-04-7 886.95 N 326657.03 E 2302051.77 890 882.3 880 ORIGINAL ROCK LINE ORIGINAL ROCK LINE -870 Note: The fault in front of Monolith 5 was projected MONOLITH #5 from foundation reports of the adjacent training wall monoliths. 860 SHALE gray, silty, soft to mod. hard, laminated, slightly effervescent toward bottom 850 850 LIMESTONE dark gray, hard to very hard, fossillferous SHALE dark gray, soft, carbonaceous, highly fissle 840 840 COAL black, boney coal SILTSTONE/SANDY gray, mod. hard, sandy in zones, thin bedded 830 830 820 820 810 810 800 - 800 790 790

MONOLITH #5 (M-5) - SECTION STA. 3+26

780

110

100

US Army Corps of Engineers Huntington District

U.S. ARMY CORPS OF ENGINEERS
HUNTINGTON DISTRICT
HUNTINGTON, WEST VIRGINIA
ENGINEERING GEOLOGY SECTION
GEOTECHNICAL ENGINEERING SECTION
ENGINEERING GEOLOGY SECTION
ENGINEERING GEOLOGY SECTION

TUSCAWARAS RIVER
DOVER, OH
DOVER DAM
DAM SAFETY ASSURANCE
EVALUATION REPORT
MONOLITH 5 SECTION

780

Sheet reference number:

EXHIBIT II-3

GEOLOGY AND SOILS LEGEND

UNIFIED SOIL CLASSIFICATION Including Identification and Description FIELD IDENTIFICATION PROCEDURES actuding particles larger than 3 inches dosing tractions on estimated weights GROUP SYMBOLS INFORMÁTION REQUIRED FOR DESCRIBING SOILS TYPICAL NAMES LABORATORY CLASSIFICATION CRITERIA MAJOR DIVISIONS 3 Wide range in grain sizes and substantial amounts of all intermediate particle sizes. For undisturbed soils odd information on stratification, degree of compactness, cementation, moisture conditions, and drainage characteristics. C_U = D₁₀ Greater than 4 Well-graded grayels, grayel-sand mixtures, tille or no fines. GW C_c = D₁₀ D₆₀ Between one and 3 GP Poorly-graded grayels, gravel-sand mixtures, little or no lines. sieve Sieve lonplostic lines or lines with low plosticity (for identification procedures see ML below). Grayels
with Fines
(Appreciable
amount
of fines) Silly grayels, grayel-sand-sill mixtures. Allerberg limils below "A" line Atterberg limits below "A" line or Pl less than 4

Atterberg limits above "A" line with Pl areater than 7

Atterberg limits above "A" line with Pl areater than 7 GM Give typical name; indicate S.Z. opproximate maner inactive approximate percentage sand and grayet, max. size; angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive information; and symbol in parentheses. Plastic fines (for identification procedures see CL below). Clayey gravels, gravel-sand-clay mixtures. GC with Pl greater than 7 General Control of Con Wide range in grain size and substantial amounts of all intermediate particle sizes. $C_{u} = \frac{D_{60}}{D_{10}}$ Greater than 6 Well-graded sands, grayelly sands, little or no lines. SW $C_{c} = \frac{(D_{30})^{c}}{D_{10} D_{60}}$ Between one and 3 Predominantly one size or a range of sizes with some intermediate sizes missing. 22 23 Poorly-graded sands, gravelly sands, little or no lines. SP EXAMPLE EXAMPLE
Silly sand, grayelly: about 20% har angular grayel particles 1/2-in.
max. size: rounded and subangular sand grains coarse to line: about 15% nanplastic fines with tow dry strength: well compacted and moist in place: alluyial sand (SM). Not meeting all gradation requirements for SW Nonplastic lines or fines with low plasticity (for identification procedures see ML below). Allerberg limits below "A" line or Pl less than 4 Limits plotting in halched zone with Pl between 4 and 7 are borderline coses requiring use of dual symbols. SM Silly sands, sand-sill mixtures. Clayey sands, sand-clay mixtures. Plastic lines (for identification procedures see CL below). with Pl greater than 7 Fraction Smaller than No. 40 Sieve Size DRY STRENGTH TOUGHNESS reaction to shaking) consistenc near PL) Give typical name, indicate degree and character of plasticity, amount and maximum size of coarse grains, color in wel condition, odor if any, local or geologic name, and other pertinent descriptive information, and symbol Inorganic sills and yery line sands, rock flour, silly or clayey line sands or clayey sills with slight plasticity. — Comparing Soils at Equal Liquid Limit
— Toughness and Dry Strength Increase
— with Increasing Plasticity Index Quick to sto None norganic clays of low to medium plasticity, grayelly clays, sandy clays, silly clays, lean clays. CL None lo slov Organic sills and organic silly clays of low plasticity. Slight to medium OL Slow Slighl For undisturbed soits add information on structure. stratification, consistency in undisturbed and remolded states, moisture and drainage conditions. norganic sills, micaceous or dialomaceous fine sandy or silly soils, elastic sills. Slight to medium Slight to medium Slow to nor Inorganic clays of high plasticity, fal clays. CH None High EXÁMPLE Clayey sill, brown, slightly plastic, small percentage of line sand, numerous yertical root holes, firm and dry in place, loess (ML) Organic clays of medium to high plasticity, organic sitts. Medium Io high None to very slow OH Readily identified by color, odor, spongy feet and frequently by fibrous lexture. PLASTICITY CHART Highly Organic Soils Peal and other highly organic soits. (1) Boundary classifications: Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well-graded grayet-sand mixture with clay binder (2) All sieve sizes on this chart are U.S. standard.

2

FIELD IDENTIFICATION PROCEDURES FOR FINE-GRAINED SOILS OR FRACTIONS

These procedures are to be performed on the minus No. 40 sieve size particles, approximately 1/64 in, for field classification purposes, screening is not intended, simply remove by hand the coarse particles that interfere with the tests.

D

В

DILATANCY (reaction to shaking)

After removing particles larger than No. 40 sieve size, prepare a pat of moist soit with a volume of about one-half cubic inch. Add enough water if necessary to make the soit soft but not sticky.

Place the pat in the apen polm of one hand and shake harizontally, striking vigorously against the other hand several times. A positive reaction consists of the appearance of water on the surface of the pat which changes to a tivery consistency and becomes glassy. When the sample is squeezed between the fingers, the water and glass disappear from the surface, the pat stiffens, and finally cracks or crumbles. The rapidity of appearance of water during shaking and of its disappearance during squeezing assist in identifying the character of the lines in a soit.

Very line clean sands give the quickest and most distinct reaction whereas a plastic clay has no reaction. Inorganic sitts, such as a typical rock flour show a moderately quick reaction.

ABBREVIATIONS

DRY STRENGTH (crushing characteristics)
After removing particles larger than No. 40 sieve size, mold a pat
of soil to the consistency of pully, adding water, if necessary.
Allow the pat to dry completely by oven, sun, or air drying, and
then test its strength by breaking or crumbling between the
fingers. This strength is a measure of the character and
quantity of the colloidal fraction contained in the soil.
The dry strength increases with increasing plasticity.

High dry strength is characteristic of clays in the CH group.
A typical inorganic sill possesses only very slight dry strength.
Silly fine sands and sills have about the same slight dry strength, but can be distinguished by the feet when powdering the dried specimen. Fine sand feets grilly whereas a typical sill has the smooth feet of flour.

Interfere with the tests.

TOUGHNESS (consistency near plastic limit)

After remaying particles larger then the No. 40 sieve size, a specimen of soil about one-half inch cube in size is molded to the consistency of pully. If too dry, water must beadded and if sticky, the specimen should be spread in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is rolled out by hand on a smooth surface or between the palms into a thread about one-eighth inch diameter. The thread is then folded and revolted repeatedly. During this maniputation the moisture content is gradually reduced and the specimen stiffens, finally loses its plosticity, and crumbles when the plastic limit is reached.

After the thread crumbles, the pieces should be tumped together and a slight kneeding action continued until the tump crumbles.

The lougher the thread near the plastic limit and the stiffer the tump when it finally crumbles, the more potent is the colloidal clay fraction in the soil. Weakness of the thread at the plastic limit and quick toss of coherence of the tump below the plastic limit indicate either inorganic clay of low plasticity, or materials such as kaolin-type clays and organic clays which occur below the A-time.

Highly organic clays have a very weak and spongy feet at the plastic limit.

.3

Highly organic clays have a very weak and spongy feel at the plastic limit.

Adopted by the Corps of Engineers and Bureau of Rectamation, January 1952.

NUMBER AND TYPE OF EXPLORATIONS

) .	angle allernate(ly)(ing)	1.	fine	mol.	mollled moisl	sir. Siy.	stringer(s) stylolite(ic)	CODE	YEAR	HOLE NO.		DESIGNÁTION
il. Inni.	al lernate(Ly)(ing)	fer. fis.	ferruginous fissile	MSI. Mix.	malrix	51 y .	•	CODE	I E ANT	IIQ.		DE SIGNA I ION
ing.	angular	fil.	fill(ed)(ing)		-	I. Iho.	lhin Ihroughoul	С -	- 98	- 52	0	Core hole in bedrock
pprox.	opproximate(ty)	fm.	firm	n.	near nodule(s)	ino. Ik.	lhick	•	30	JŁ	O	Core note in bearock
¥.	orgillaceous	ios.	fossil(iferous)	nod. num.	noquie(5) numerous	Ĭř.	Irace				_	
ren.	orénoceous	frac. fra gs .	frocture(d) frogment(s)(ot)	ngn.	HOLLEL COS			D -	- 98	- 31		Disturbed sample boring
osp.	asphal lic	iri.	frioble	0.	open	y. y a.	yariably yariegaled					
) .	bone	FP	fixed-piston	0. od .	odor	ve.	VAC V				_	
ba.	banded(ing)	FW	free water	OCC.	occasional(ly)	yeg.	vegetation	CD -	- 98	- 69	•	Boring with disturbed sampling in soil and coring in bedrock.
od.	bed(ed)(ing)	_		occu.	occurring organic	ver.	verlical(ly)				_	in soil and coring in bedrock.
bor.	bedrock buil	g. gen. gr. gr. gro.	grain(ed) generally	org.	organic	YU.	yuggy				_	
DI. Ne	black	gen.	generally green(ish)	pa.	parling(s)	,		UD -	· 98	- 31		Undisturbed sample boring
oky.	blocky	or.	gray	parl.	parling(s) parlicle(s)	₩. ₩/	waler with					
okn.	broken	aro.	aravell v	%	percent(age)	w/o	wilhoul					Core hole in bedrock, hydraulic
ol.	blue	graa.	grading(ed)	pi. pl.	piece	wc.	water content					pressure tested
ol.	bollom	ĞW	groundwater	pi.	plostic	WC wd.	wealhered					pressure residu
oou. ore.	boulder(s)	h.	hard	PL peb.	plastic limit pebble(s)	WH	weight of hommer				6	Indicates each basins
ore. Or.	breccio(led) brown(ish)			peu. ok	henniers)	whi.	while _				€	Indicates angle boring and direction
,	Or Own(1911)	ha. hi.	high angle high(er)(ly)	oki.	pockel(s)	WL	water level					
t.	coarse	hor.	horizonial(ly)	Pk. Pkl. Pil.	pil(led)(ling)	WQ.	wood				О	Boring with Piezometer
CO.	colcoreous			gn.	plane(s)	×-bd.	cross-bedded(ing)				•	•
corb.	corbonoceous	IC inc.	initial contact	ро. pl.	porous por I(ly)		. •					
coy. cbl.	cayern, cayily cobble(y)	inc.	included, inclusions		pyrile(ic)	y.	yellow(ish)				⊕	Proposed Exploration
COL. Ch.	cher i	inla.	increasing((y) intertaminated	pyr.	bye/ic/	-	zone					
ci.	clay(ey)	ini.	intercalations	Q.	quarlz(ilic)	Z .	2016	TP -	98	- 15		
cib.	claybands clean	inlbd.	interbedded					IF -	90	- 15		Test Pit in overburden
cle.	cleán	itt.	irregular	f.	red(dišþ)							
COO.	coal(ed)(ing)	:.	join1(ed)	ro. rol.	rock(s) rolled(en)			TT -	98	- 6 - 1	35 🖺	Test Trench in overburden (TT-98-6), soils classified
comp. con.	compoci(eď) contains	įl.	lounteot	roi. rou.	romd(ed)			- 11 -	90	- 6 - 1)) <u> </u>	(TT-98-6), soils classi <u>fied</u>
conc.	concretion		low	rl.	rool(s)(le1)							at stationing as shown (135 feet)
cong.	conglomerale(ic)	li.	lille									
coni.	confinuous	ļo.	low angle	S .	sofi			UD -	- 98	- 39	•	Undisturbed sample boring with Piezome
Cr.	crushed	los.	laminale(ed)(ions)	SS 50.	splil spoon sondy							
crm.	crumbly	lay. l e .	layer(s) lean	sal.	saluraled						•	Disturbed Sample Boring with Piezomete
csi. cem.	crysici(line) cemeni(ed)	lea.	legched	scal.	scollered						•	•
C.C.III.	Cemenite01	ien.	lense(s)	se.	seams							Washbored
dc.	decayed	lg.	lorge	sey.	severe(ly)							11 0311001 00
đi.	dir l y	LĹ	liquid limil	seyr.	several							
dia.	djameter	los.	loose	sh.	shòly shells							Cone Penetrometer Hole
diag.	diagonal	Ų.	lighl	she. Sil.	siliceous							
dis. disc.	disinlegraled	m.	medium	SI.	silly							Device with Indianantes
disc. diss.	disconfinuous disseminaled	ma.	many	Sik.	slickensided							Boring with Inclinometer
dk.	dark	mas. mal.	mossiyely malerial	sm.	small							
đn.	dense			50 .	some						•	Boring with disturbed sampling in soil
dmp.	domp	mic. min.	micoeous	sol. sig.	solution stain(ed)						A	Boring with disturbed sampling in soil and coring in bedrock, with a Piezomete
ext.	extremely	mod.	mineralized moderatelly)	sia. Stf.	Stiff							-
elem.	elements	MOS.	mostly	stks.	streak(s)							Boring with disturbed sampling in soil and coring in bedrock, and hydraulic
P											(and coring in bedrock, and hydraulic
											-	pressure lested.

BEDROCK DESCRIPTORS

BROKEN OR FRACTURED CORE HARDNESS Very Soft - Can be deformed by hand Soft - Can be scratched with fingernail Moderately Broken - Broken core pieces can be reconstructed with Moderately Hard - Can be scratched easily with a knife Hard - Can be scratched with difficulty

THICKNESS OF BEDDING

Mossive - Beds 3 feet thick or greater Thick Bedded - Beds from 1 to 3 feet thick Medium Bedded - Beds from 4 inches to 1 foot thick Thin Bedded - Beds 4 inches or less

Very Hard - Cannot be scratched with a knife

GRAIN SIZE

Boulders - • 305 mm diameter Cobbles - 305 - 76 mm diameter Gravel - 76 - 5 mm diameter Coarse Grained - 5 - 2 mm diameter Medium Grained - 2 - 0.4 mm diameter Fine Grained - 0.4 - 0.1 mm diameter

Very Fine Grained - 0.1 mm diameter LIGHT GRAY REDUCTION SPOT FREQUENCY

Few — Greater than 1/2-inch spacing between reduction spots with diameters of 0.01 or greater Numerous - 1/2-inch spacing or less between reduction spots with diameters of 0.01 or greater

Severely Broken - Broken core pieces can not be reconstructed, gravel-sized pieces, core loss common

Slightly Broken - Broken core pieces can be reconstructed easily

DEGREE OF WEATHERING

5

Unweathered — No evidence of any chemical or mechanical alteration Slightly Weatherd - Slight discoloration on surface, slight alteration along discontinuities, less than 10% of the rock volume altered Moderately Weathered — Discoloring evident, surface pitted and altered with alteration penetrating well below rock surfaces.

weathering "halos" evident, 10% to 50% of the rock altered Highly Weathered - Entire mass discolored, alteration pervading nearly all of the rock with some pockets of slightly weathered rock

noticeable, some minerals leached away Decomposed - Rock reduced to a soil with relict rock texture, generally molded and crumbled by hand

DISCONTINUITY SURFACE

Very Rough - Near vertical ridges occur on the discontinuity surface Rough - Some ridges are evident; asperities are clearly visible and discontinuity surface feels very abrasive

Slightly Rough — Asperities on the discontinuity surface are distinguisable and can be felt Smooth - Surface appears smooth and feels so to the touch

Slickensided - Visual evidence of polishing exists Planar - Flat shaped discontinuity surface

Irregular - Undulant or unevenly shaped discontinuity surface

GENERAL BEDROCK DESCRIPTION

Bedrock at the Soo project is sandstone of the late Precambrian-aged Jacobsville Sandstone Formation. For engineering purposes this formation has been classified into four major members. These members include: Hard Sandstone, Moderately Hard Sandstone, Weathered Sandstone and Shaly Sandstone. Within these sandstone members are thinner seams of clay, claystone and shale.

Hard Sandstone member is typically light gray, light red or light purple with few light gray reduction spots, hard to very hard, fine to medium grained occasionally cross bedded and medium to thick bedded.

Moderately Hard Sandstone member is typically red with few to numerous light gray reduction spots, moderately hard, fine to medium grained Weathered Sandstone member is typically red with numerous light gray reduction spots, moderately hard, fine to medium grained, moderately weathered and thin bedded.

Shaly Sandstone member is typically red to dark red with light gray reduction spots, soft to moderately hard, fine grained and thin bedded.

	BEDROCK SYMBOLS		
SS - HARD SANDSTONE	SS W - WEATHERED SANDSTONE	SH - SHALE	CON - CONCRETE
SS - MODERATELY HARD SANDSTONE	SS - SHALY SANDSTONE	CLS - CLAYSTONE	LS - LIMESTONE

GRAPHIC LOG OF BORING

H-H US Army Corps of Engineers nlington District

.S. ARMY CORPS OF ENGINEERS	Designed by: EC-G	9-0	Dote:
HUNTINGTON, WEST VIRGINIA	Dwn by: DKP, DAW	Ckd by: SCL	Design file no.
	Reviewed by: AW	oy: Awk	Drawing code≈
	Submitted by:	y:	File nome: BIO Piot dote: Piot scole:

Sheet reference number: EXH 3 Sheet 1 of 1

EXHIBIT II-4

GRAPHIC LOGS AND BORINGS

DRILLI	NG LO		ision eat Lakes and Ohio River	INSTALLATI		RH-EC-	-C	SHEET 1
1. PROJECT			TITE CONTROL OF THE PARTY OF TH	10. SIZE A	_			OF 2 SHEETS
2. LOCATION	Dover		<u> </u>	11. DATUM			SHOWN (TBM or	WSL)
	Ohio	or station		12. MANUF	ACTURER'	S DESIGN	NGVD 1929 NATION OF DRILL	
3. DRILLING		Unkn	own				Unknown	
4. HOLE NO.	(As shown o		titie	13. TOTAL BURDEN	NO. OF (DVER- S TAKEN	DISTURBED	UNDISTURBEO
5. NAME OF			<u>'G-4</u>	14. TOTAL				
6. DIRECTION	OF 1101 F	Kenny	/ Olsen	15. ELEVA	TION GRO		0,0,,	
X VERTI			CEG. FROM VERT.	16. DATE H	HOLE	:51/	11-19-82	12-02-82
			00.0 Feet	17. ELEVA				
8. DEPTH DE				18. TOTAL			FOR BORING	99.7
9. TOTAL DE	PTH OF H	IOLE	37.1 Feet	,		Je	rry Ballard Jr.	_
ELEVATION a	DEPTH b	LEGEND c	CLASSIFICATION OF MATERIAL (Discription)	s	% CORE RECOV- ERY e.	BOX OR SAMPLE NO. f.	REM (Ortiling time, w weathering, etc.	IARKS ofer loss, depth of , (f significant) g
	=		CONCRETE: Natural grave aggregate.					
			Rounded 2 inch maxim diameter gravel.	um				
	Ⅎ		0.2' Zone of poorly ce	mented				
			0.2' Zone of poorly ce oggregate at 876.2 to 876.0.					
	Ξ							
	\exists				ľ		100% Drill recov	ery in concret
	╡						Concrete retai see G-5 Boxes	very in concret ned for record s A&B
						}		
	\exists							
1	\exists							
	=							
	\exists							
	_				1			
	=							
	\exists							
	_							
	\exists							
		CON						
	=							
	~						-	
	Ξ							
	-							
	-							
	=							
	_							
	_							
	-							
	\exists							
	_							
	20.0							
862.3 LRH FORN	20.0							

PROJECT	er Dom	Caller		882.3	II INITINIC	TON 1	Hole No.	SHEET Z
Dov	ver Dam	Galler	у	'			DISTRICT	OF 2 SHEETS
ELEVATION •	DEPTH	LEGEND	CLASSIFICATION OF (Description)	MATERIALS	Z CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARI (Drilling time, water weathering, etc., if	KS loss, depth of significant)
	-		CONCRETE: (Continu	red)				
	_	CON						
860.5	21.8 ~				Rec		Began C	oring
			7 (0		Rec 100%		}	
859.5	22.8 -		Top of Roo SHALE: Silty moder		-	ĺ	Good concrete	to rock bond
			SHALE: Silty, moder dark gray, moderate fissle with numerous	ely to highly s fine, light			Porting in Shol below Concrete contact.	e 0.05'
			groy sandy lenses.			ĺ	contoct.	C/ NOCK
			0.5' unweothered, broken high ong from 859.4'-85	severely le frocture				
			from 659.4*-65	08.91.			ĺ	
	=							
					Loss 0.0			
	=				Rec 100%	1		
					100%			
	-	SH						
	_				}			
	-					1	1	
	-							
	=							
							Ì	
	=				Loss 0.0			
	=				Rec 98%	İ	}	
	-				30%	ĺ		
	=							
849.2	33.1				J		ĺ	
			LIMESTONE: Hord, d fossiliferous, thick t	ark gray edded.		l		
	_							
	=							
		LS			Loss			
	=	ĺ			Loss 0.1 Rec 100%		1	
	_				100%	2		
0.1-					Loss 0.0	_		
845.2	37.1—		Bottom of h	fole	0.0			
	=							
]						
	=							
	=	1						
] =	1						
		1						
	=	-						
	=							
	M 1836-	1					m Gallery	

DRILLI	NG LO		ISION eat Lakes onc Ohia River	INSTALL		RH-EC-	SHEET 1	
ı. PROJECT			21.25.25 5110 111461	10. SIZE	AND TYPE		10r 2 3nd	ETS
2. LOCATION	Dover (Coordinate				UM FOR EL		SHOWN (TBM or WSL)	
	Ohio		<u> </u>	12. MAN	UF ACTURER	5 DESIGN	NGVD 1929 ATION OF ORILL	
3. DRILLING	AGENÇY	Unkn	<u>own</u>				Unknown	
4. HOLE NO.	. (As shown imber)	on drowing	r//le : G-5	13. 101 BURI	AL ND. OF C DEN SAMPLE	S TAKEN	O : UNDISTURBED : UNDISTURBE	0
5. NAME OF			<u>G-5</u>	14. TOT	AL NUMBER	CORE BO	exes 2	
6. DIRECTION	L OF HOLE	Kenny	/ Olsen	_	VATION GRO	_		
	CAL IN		DEG. FROM VERT.		E HOLE		RTED COMPLETED 12-09	-82
7. THICKNES	S OF OVE	RBURDEN	nn Feet		VATION TOP			
8, DEPTH DE	RILLÉD INT	O ROCK			E OF INSPE		FOR BORING 99	.5 ×
9. TOTAL DE	PTH OF #	HOLE	<u>42.2 Feet</u>			Jer	ry Ballard Jr.	
ELEVATION	DEPTH 6	LEG€ND ¢	CLASSIFICATION OF MATERIA, (Description)	\$	% CORE RECOV- ERY 6.	BOX OR SAMPLE NO. f.	REMARKS [Drilling films, worter loss, depweothering, etc., if significal g	th of
	•		CONCRETE: Natural, round	ded				
			gravelaggregate up ta 3 moximum diameter.	HICH				-
	7							
	\exists				1		100% Drill recovery in concrete.	
								-
	_							
	=						0	
·]	Cancrete cored and discorded from 882.3' to 851.5'.	
	=							
							Concrete appeared to be satisfactory by visual observation with no loss	e
							observation with no loss	, [
							recarded.	- [
	╡							
								ļ
	_							-
	_							
]		
								ļ
	-							
	_	CON						-
•	_	CON			1			
	Ξ							
	=							
	=							
	-							
	=							
								}
	_	1						
		1						
	=							
								ŀ
	_	1						[
862.3	20.0 =	1				1		L

LRH Form 1836.dgn 8/21/2006 10:38:50 AM

PROJECT	or Dom	Callas	882.3	LIMITIME	TON C		SHEET 2	
	rer Dam	Goller	у			DISTRICT	OF 2 SHEETS	_
ELEVATION	DEPTH	LEGEND c	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water to weathering, etc., if so	ss, depth of ignificant)	
	-		CONCRETE: (Continued)					_
	-		·					
				ĺ				
	=]			
	_							
	=							
		ŀ		l				
	=	<u>.</u>						
		CON						
	=							
	-							
	Ξ			}				
						Cancrete, see 25° cold join	G-5, Box C	
	=					25° cold join	₹ 2 854.1	
	│							
	=							
	`							
851.5	30.8	,				Began Ca	oring	
				Rec 100%				
ľ	' ∃							
	=							
849.0	33.3 -		Top of Rock			Open at cond rock contact	rete to	
	=		LIMESTONE: Hard, dark gray fossilferous, medium to thick bedded.					
			0.8' unweathered, near vertical fracture 847.3 to 846.5					
		LS	0.6' open, stained, high angle fracture 846.4 to 845.8	Loss 0.0				
			Open bedding plane with same grout coating at 845.8	Rec 96%	,	-		
			0.2' open, low angle fracture with grout coating at 845.6					
844.5	37.8 ⁻		Gradational Contact ot 849.0 (open contact with rock) next parting 847.0					
			SHALE: Soft to moderatly hard, clayey, very dark gray, highly fissle.					
]							
		SH	Unweathered, low ongle joint at 843.8					
	Ε		0.2' Braken zone along fracture with 0.2' loss at 842.4 to 842.0					
	=							
841.2	41.1		Gradational contact between Shale and Siltstone.	Loss 0.2				
	=		SILTSTONE: Moderatley hard, gray, sandy in zones, thin bedded.	Rec 100%	1			
9404	<u>-</u>	SLS	bedded.	Loss 0.0				
840.1			Bottom of Hole	0.0				\dashv
	Ε.							
	=							
RH FOR	M 18 36-	Α		PROJECT		HOL	C NO.	_

LRH Form 1836.dgn 8/21/2006 10:39:30 AM

DRILL	NG LO		ision eat Lakes and Ohia River	INSTALLATI	ON CELE	RH-EC-	SHEET 1
1. PROJECT			edi Lakes ono Otto Miver	10. SIZE A			NX OF 3 SHEETS
	Dover			11. DATUM			
2. LOCATION	(Coordinate Ohio	s or Station	1)				NGVD 1929
3. DRILLING		Halia		12. MANUF	ACTURER'		ATION OF DRILL UNKNOWN
4. HOLE NO	IAs shown	Unka oo drawlaa		13. TOTAL	ND. OF	OVER-	:DISTURBED :UNDISTURBED
4. HOLE NO				14. TOTAL		S TAKEN	
5. NAME OF	DRILLER	Kenny	/ Olsen	15. ELEVA			
6. DIRECTION		:		16. DATE H			RTED COMPLETED
X VERT	ICAL IN	CLINED	DEG. FROM VERT.	17. ELEVA		OF HOLI	12-09-82 12-15-82 882.3
			00.0 Feet				FOR BORING 98.6
9. TOTAL D			17,4 Feet	19. NAME (DF INSPE		
			52.2 Feet		% CORE	Jer Bûx or Sample	ry Ballard Jr. REMARKS
ELEVATION 0	0€PTH 6	LEGEND c	CLASSIFICATION OF MATERIAL (Dascription)	.5	ERY e.	NO.	(Drilling time, water loss, depth of weathering, etc., if significant)
			CONCRETE: Matural, round	ded			
			gravel aggregate up to 3 maximum dicmeter.	inch			
					,		1007 Dellegggggggggggggggggggggggggggggggggg
	· =						100% Drill recovery on oll Concrete.
	=						No ununcelle est
	_						No unusuolbraken zones.
	_				[
							Cancrete cored and discorded from 882.3' to 852.7'
							882.3' to 852.7'
	╛						
						.	
	=						
	_=						
	=						
	=						
	=						
	=	CON					
	-	CON					
	7					' I	
	Ē		,				
	∃						
	╡						
	\exists						
	\exists					ĺ	
	Ⅎ						
	그						
	=						
	=						
	Ξ						
	_						
	=						
	=						
	=						
	\exists						
	Ξ					'	
	=						
	=						
862.3	20.0						
LRH FOR	พ 1836				PROJECT	r _	n. Ohio G-6

PROJECT		Cont S	INSTALLATION				3-6 SHEET 2
	Dover	Dam				DISTRICT	OF 3 SHEETS
ELEVATION .	OEPTH 6	LEGEND	CLASSIFICATION OF MATERIALS (Description)	Z CORE RECOV- ERY	BOX OR SAMPLE NO.	weathering, etc_ if si	ss. depth of gnif load)
-	=		CONCRETE: (Continued)	† <u>-</u>	-	•	
	=						
ĺ				1			
, .	=					1	
					1		
ľ							
						1	
	-				1		
				}			
	=	CON					
	_						
	=						
				1			
	-						
852.7	29.6		CONCRETE, M. I. III			Began C	oring
			CONCRETE: Natural sediment aggregate, some vuggy zones.	Rec 100%			
	_			ĺ		J	
	=				[
				1			
						Open at Contact Next parting 848.	(core spun)
						priest purting 646.	. т
848.5	33.8 ⁻		Top of Rock	Lass			
			LIMESTONE: Hard, dark gray, fossiliferous, medium bedded.	D.D Rec	1	}	
	_			Rec 96%	ł		
		LS			1		
	_						
	_						
·							
843.8	3 <u>8.5</u> –		SHALE: Moderately hard to	Loss			
			SHALE: Moderately hard to hard, dark gray clayey, thin bedded, highly fissle.	Loss 0.2	-	}	
	=		Fracture, open, planar, smooth fram 843.0' to 842.7'.	Rec 100%			
	_	SH					
	=		Vertical froature, open, rough irregulor from 842.2' to 842.1'				
	_		to 842,1'				
840.8	41.5		SILTSTONE: Moderatoby bond to	4			
			SILTSTONE: Moderately hard to hard, gray, thin bedded, with Shaly zones and zones of fine grained Sandstone.				
	=		grained Sandstone.				
		SLS	0.4' Shale, clayey, dork gray at 838.5 to 838.1				
	_						
			2.5' Sondstone, sitly, at 838.1	Loss 0.0			

Dover Dom STALLATION BUNING ION. DISTRICT SET 3 SHETTS CLEVATION DEPTH LEGEND CLASSIFICATION OF MATCHIA.S SILTSTONE: (Continued) Thin badded, moder clety broken from 838.5' SLS SILTSTONE: Moderately hord, sholey and sondy gray, modestone from 831.7' LOSS SILTSTONE: Moderately hord, sholey and sondy gray, modestone from 831.7' SSLS SILTSTONE: Moderately hord, sholey and sondy gray, modestone from 831.7' SSLS Source by horden, crushed to graved and pebbe grad gray gray and sondy gray gray and sondy gray gray and sondy gray. SLS SET STONE: Moderately hord, sholey and thin bedded from 831.7' SSLS Severely broken, crushed to graved and pebbe grad gray gray gray and gray gray gray gray and gray gray gray gray gray gray gray gray	DRILLING	LOG (Cont S	heet) ELEVATION TOP OF		88	2.3		Hole	No.	G-6		
ELEVATION DEPTH LEGEND CLASSIFICATION OF MATERIALS (Description) SILTSTONE: (Continued) Thin bedded, moderately broken from 838.5' to 838.1' SILTSTONE: Moderately hord, sholey and sandy gray, moderately fissle, with thin sondstone zones. 0.5' Sandstone, fig., at 834.4 to 833.9' Moderately broken and thin bedded from 831.7' to 831.4' Severely broken, crushed to gravel and pebble sized pieces from 830.5' to 830.3' BASO.1 52.2' CORE RECOVERY SAMPLE (Criting flow, or SAMPLE RECOVERY) Recovery doto not recorded. Recovery doto not recorded. Recovery doto not recorded. Loss N/A		D	over D	om	INSTALLATION	ЯŪ	NIING	ION_	DISIBICI			3 SHEETS	
SILTSTONE: (Continued) Thin bedded, moderately broken from 838.5' to 838.1' SILTSTONE: Moderately hord, sholey and sandy gray, moderately fissle, with thin sondstone zones. 0.5' Sandstone, fig., at 834.4 to 833.9' Moderately broken and thin bedded from 831.7' to 831.4' Severely broken, crushed to gravel and pebble sized pieces from 830.6' to 830.3' 830.1 52.2' Loss N/A	1 1		-		MATERIALS		CORE RECOV- ERY	BOX OR SAMPLE NO.	(Dritting weather	REMARI time, water Ing. etc., if			
SILTSTONE: Moderately hord, sholey and sandy gray, moderately fissle, with thin sondstone zones. 0.5' Sandstone, fig., at 834.4 to 833.9 Moderately broken and thin bedded from 831.7' to 831.4' Severely broken, crushed to gravel and pebble sized pieces from 830.6' to 830.3' B30.1 52.2							Rec		Recovery		not rec	orded.	
830.1	835.6	46.7	SLS	0.5' Sondstone, fi to 833.9 Moderately broke bedded from 8 to 831.4'	ig., at 834.4 en and thin 331.7'			2					
	830.1 5	2.2	_	Rottom of h		ı	.oss N/A						

Delit	ING LOG	NOISION	INSTALLAT				Suggra a
1. PROJECT		Great Lakes and Ohio River		CELF	RH-EC		SHEET 1 OF 3 SHEETS
	Dover Dam		10. SIZE A	ND TYPE	OF BIT	Impregnated	and Diamond NX
2. LOCATION	N (Coordinates or State	(lon)				NGVD 1929	or #SD
3. ORILLING	Ohio AGENCY	KNOWN	12. MANUF	ACTURER'		ATION OF ORILL	
4. HOLE NO	. (As shown on drawl		13. TOTAL	NO. OF C	OVER-	DISTURBED	UNDISTURBED
5, NAME OF		G-7	14. TOTAL				:D
6. DIRECTIO	Ken	ny Olson	15. ELEVA		UND WAT	ER 874.0 -	871.4
VERT	N OF HOLE ICAL [X] INCLINED.	20°S 70°W DEG, FROM VERT.	16. DATE F	HOLE	STA	01-11-83	COMPLETED 01-14-83
	S OF OVERBURDE		17. ELEVAT			882.3	
8. DEPTH D	RILLED INTO ROCK		19. NAME (FOR BORING	98.2
9. TOTAL D	EPTH OF HOLE	61.1 Feet			Jer	ry Ballard J	
ELEVATION	DEPTH LEGEN	(Osscription)	LS	RECOV- ERY	BOX OR SAMPLE NO. f.	(Drilling time: wmothering: e	EMARKS water loss, depth of tc., it significant)
		CONCRETE: Peo gravela and some chert fragmen	ggregate		, ' <u>'</u>		0
ľ		and some chert tragmen	ns.				
	-						
]						
	-						
	-						
}							
						Concrete discorded	wos cored and from 882.3' to
	Ξ					850.41.	
]							
]						
[=						
ł							
] ‡						
}	Ē	1					
	_=]			
ĺ	=	1					
	= CON						
1				ĺ	,		
	<u> </u>						
	‡			ĺ			
	=						
1	<u> </u>						
	=						
]						
	=						
					}		
}	E						
	=						
	=						
	=						
	=				[
	=						
	=						
863.5	20.0						
1 511 505	M 1836	_ '		PROJEC	T	m. Ohio	HOLE NO.

DRILLING PROJECT			1007 ALL 47/04	3		Hole No.	G+7
	Do	ver Don	n, Ohio	HUNTING	STON I	DISTRICT	SHEET 2 OF 3 SHEETS
ELEVATION 0	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description) d	% CORE RECOV- ERY	BOX OR SAMPLE NO.	weathering, etc., tr	S loss, depth of significant)
	=		CONCRETE: (Continued)	<u> </u>	<u> </u>		•
	=			1		J	
	_	1 1		- }]		
						[
	_]]					
	_				ĺ	}	
]]		-		}	
	-				1		
		}					
	·				ĺ		
	_						
	=	CON					
	=						
ĺ	1						
	=				1	1	
	_					}	
l	-	l j					
				1			
	_						
	_	·					
	=						_
850.4	34.0		Concrete retained from 850.41 to 848.71	Rec		Begon C	oring
			850.4' to 848.7'	Rec 100%		Core diameter la	oss to 849 8'
	-						
848.7	35.8		Top of Rock				
540.7	-		LIMESTONE: Dark gray to black hard with laminated seams,	,			
	-		fossiliferous.				
			Severely braken zone from 845.9' to 845.5'				
		L\$	85° frocture, rough and irregulor from 845.9' to 845.4'				
	-	LS	070.7	Loss D.0			
				Rec 96%	1		
	=			96%			
					1		
844.2	40.5 -					(
	=		SHALE: Block, moderately hard.				
			Severely broken, crushed,				
] =		Severely broken, crushed, and weathered zone with multiple open bedding plane and incipient fractured zone appears to be pulverized with pieces the size of pebbles and small gravel fro 842.0' to 841.4'	s			
	_	\$H	one incipient tractured zone oppears to be pulverized	·			
	=		pebbles and small gravel fro	m			
			042.0 (0 841.4				
	_			Loss 0.2		}	
840.9	44.0				-		

DRILLING	LOG (Cont SI	heet) ELEVATION TOP OF	HOLE B	82.3		Hole No.	G-7	
PROJECT	Dov	er Don	n, Ohio	INSTALLATION	HUNING	IQN_D	ISIRICI	SHEET OF 3	3
ELEVATION	HT930	LEGENO	CLASSIFICATION OF	MATERIALS		BOX OR SAMPLE NO.	REMAR) (Drilling Ilma water weathering, etc., if		
840.9	44.0	•	SILTSTONE: Sandy into gray, modera hord, sandier with	r, dark groy tely hard to	Rec 100%	- 1			
	-=		Severely broker	n and		} }			F
		ľ	fractured with high angle fra	mulitple ctures and					
			open begaing spacing betwe	pianes 0.02° en from					Ì
]	ĺ	833.2' to 832 832.2' to 830	.6', .8'.					İ
			830.6' to 830 829.6' to 828	,1', 9',					
}	=	ľ	Severely broken fractured with high angle fra open bedding spacing betwee 835.3' to 833 833.2' to 830 830.6' to 830 829.6' to 828 828.7' to 827 826.5' to 824	.3`, .9'	Loss 0.0				ļ
	=				Rec 96%				
}	=								
									-
	│ 긬	ĺ							Ė
	=								
									-
]	SLS							-
					,				į
					Loss 0.2				į
					Rec 98%				-
}	=					[[Ţ
]				2			
}						-			į
									Ė
						} [, [
									-
		ĺ				[[
	=				0.1				ŀ
	=	l			Rec 100%				Ė
	-						•		
824.8	61,1				Loss 0.0				ĺ
024.0			Baltom	of Hole			<u> </u>		
]								ŀ
	-								
]								
	=								
	=								
									-
	-								

DRILL	ING LO	G G	rision reat Lakes and Ohia River	INSTALLAT		PH-F0	SHEET 1		
1. PROJECT			Tariba dila Mivel	10. SIZE AND TYPE OF BIT NX					
2. LOCATION	Dover 1 (Coordinate		n/	II. DATUN		EVATION	SHOWN (TBM or MSU		
	Ohio			12. MANUF	ACTURER		NGVD 1929 HATION OF DRILL		
3. DRILLING	AGENCY	Unkr	<u>nown</u>				Unknown		
4. HOLE NO.	. (As shown	on drawing		13. TOTAL NO. OF OVER- OISTURBED UNDISTURBED. BURDEN SAMPLES TAKEN O					
5. NAME OF			: G-8	14. TOTAL	NUMBER	CORE B			
6. DIRECTION	1 OC 110) C	Kenn	y Olson	15. ELEVA	TION GRO	OND WAT	TER 872.7 - 870.3		
			0° S 70° W DEG. FROM VERT.	16. DATE		ST	O1-17-83 COMPLETED 01-21-83		
			00.0 Feet	17. ELEVA	TION TOP	OF HOL	E 882.3		
8. DEPTH DE	RILLED INT	D ROCK	25.9 Feet				FOR BORING 98.2 %		
9. TOTAL DE			62.2 Feet	19. NAME	DF INSPE		rry Ballard Jr.		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	.s	% CORE	BOX OR SAMPLE ND.	REMARKS		
0	ь	c	(Description)		ERY 0.	ND.	(Orilling films, water loss, depth of weathering, etc., if significant)		
	_		CONCRETE: Pea gravelag	gregate					
	=		and some there hagment	.S.			l i		
ļ									
	\exists				}		[
	\dashv								
	Ξ								
			,				C		
	=						Concrete oppeared to be solisfactory by visual observation with no loss		
	=						abservation with no loss recorded.		
ĺ	3						Concrete was acred and		
						ĺ	Cancrete was cored and discarded from 882.3' to		
	-						849.7'.		
	-								
	3]		
	크						l [
	= =						·		
	\exists								
	=	CON							
	=								
	=		,						
	\exists						-		
	=								
	\exists								
	Ξ								
	_								
	_								
	\exists								
	=								
	\exists								
	\exists								
	╡								
863.5	20.0								
RH FOR	vi 1836				PROJEC		m. Ohio HOLE NO.		

PROJECT	LOG			NSTALLATION			Hole No.	G-8	
	Po	ver Dor	n, Ohio		HUNTING	TON D	HSTRICT	OF 3 SHE	ETS
ELEVATION	DEPTH .	LEGEND 6	CLASSIFICATION OF (Description)	MATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMAI (Drilling time, wate weathering, etc.,)	RKS Floss, depth: af Fsignificant)	
			CONCRETE: (Contin	ued)			<u>_</u>		
i									
	\exists								
[
ł		ĺ							
- }	=							•	
	\exists								
ļ									
	=								
		CON							
	=								
	1								
	-								
		<u> </u>				lí			
	_								
040.7	747						Began (Corina	
849.7	34.7 -				Rec 100%		o o gon v	201 1119	
	=				100%				
	7.0 -		Top of Ro	~b					
848,2	<u>36,3 </u>				,				
			LIMESTONE: Dark of hard, thin bedded v seams, fossiliferous	viin iaminated S.	Loss D.0				
					Rec 1DO%				
					100%				
	=	L\$							
						1			
	=	1							
	=								
843.9	40.9				_				
	-		SHALE: Block, mod	-					
] =]	Badly broken zo 839.9' to 839.	ne from 7'					
		<u> </u>	0.05' grout seon	n ot 843.7	Loss 0.0				
-	=	SH			Rec 98%				
		4				1	1		
	=	1	ĺ						

DRILLING	LOG	(Cont SI	heet) ELEVATION TOP OF	HOLE 882	.3		Hole No.	G-8]
PROJECT	Dov	er Dam	, Ohio	INSTALLATION	HUNIING	IQN_D	ISIBIÇI	SHEET 3 OF 3 SHEETS	
ELEVATION	ОЕРТН	LEGEND	CLASSIFICATION OF (Description)	MATERIALS	X CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Drilling time, wol weathering, etc	ARKS ler loss, depth of If significant)	
840.1	44.9	SH	SHALE: (Continued)						Ē
			SILTSTONE: Sandy, into gray moderate hard, sand content with depth. Portially weather broken zone fr to 839.5'		Loss 0.1 Rec 96%	1			
		sus			Loss 0.2 Rec 98%		·		
					Loss 0.1 Rec 98%	2	,		
823.9	62.2				Loss 0.1				
Q23. 3			Bottom of	Hole					
LRH FOR					PROJECT	Dove	er Dam, Ohio	HOLE NO.	

DRILL	ING LOG	DIV	ISION eat Lakes and Ohio River	INS	TALLATI		DU 50	SHEET 1	=
1. PROJECT			Tax Edwes Olid Offilo River	10.	SIZE A	ND TYPE	RH-EC	OF 3 SHEETS	_
2. LOCATION	Dover [_				SHOWN ITBU OF WSU	_
	Ohio		······································	12.	MANUF	ACTURER	'S DESIG	NGVD 1929 HATION OF DRILL	_
3. DRILLING		Unkn		ᆫ		NO, OF		Unknown	
4. HOLE NO and file n	, (As shown on Umber)	drowing	///le ; G-9	13.	BURDEN	SAMPLE	S TAKE	N : O : UNDISTURBED O	ı
5. NAME OF				14. TOTAL NUMBER CORE BOXES 2					
6. DIRECTION	N OF HOLE		/ Olsen_	15. ELEVATION CROUND WATER 870.7 -869.8 16. DATE HOLE STARTED COMPLETED					
			O° S 70° W DEC. FROM VERT.			ION TOP	OF HO	01-24-83 01-28-83 LE 882.3	_
	S OF OVERB		00.0 Feet 25.0 Feet					Y FOR BORING 95.3	z
	EPTH OF HOL		60.2 Feet	19.	NAME C	OF INSPE		erry Ballard Jr.	
ELEVATION	DEPTH L	EGEND	CLASSIFICATION OF MATERIAL Description	5		% CORE RECOV- ERY 9.	BOX OF SAMPLE NO. f.	REMARKS (Orliting time, water loss, depth of weathering, etc., if significant)	
			CONCRETE: Pea grovel aggregate.	_					7
							}	Drilled through rehar	
	=							Drilled through rebar 1/2" O.D. © 881.4"	
							[
							ļ		
	\exists								
	\exists						}		
	∃								
[[크								
	=				J				
ĺĺ]	Drilled through 0.5" metal plate at 876.7' Extremely hard to drill change from	
	‡	ľ			J			impregnated to diamand bit	
	7							impregnated to diomand bit to penetrate, 30 minutes to drill through.	
]]		ł						Ì	ı
	=						}	Concrete cored and	
]	ĺ						discorded from 882.3' to 853.5'.	
	1				[(0 000.0.	
) - = 1	ON					ĺ	}	
i i	· = = =				ĺ				
	=								
		ĺ			-				ŀ
	=								Ī
	日								
[[=								-
	=								-
	=								-
	=								
	_=								
									-
									-
	_=								
									-
							}		-
	Ξ								
863.5	20.0								f
863.5 LRH FORI	м 1836					PROJEC		m. Ohio HOLE NO.	

PROJECT	Dov	er Dom	, Ohio INSTALLATION			SHEET 2	_
	_		<u> </u>	1		ISTRICT OF 3 SHEET	Γ\$
ELEVATION	DEPTH 6	LEGEND	CLASSIFICATION OF MATERIALS (Description)	ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)	
			CONCRETE: (Continued)	<u> </u>	'-	9	
	=			ĺ			
				ļ			
	_				1 1		
				1			
	_				1 1		
ĺ							
	_						
				ł			
	=				1 1	•	
}				}			
	-						
}							
	=						
	=			}			
		CON					
J	_			}			
					}		
J	_			}			
	\equiv	'					
853.5	30.7			1		Began Coring	
000.0				Rec 100%	1 1	Bogan cornig	
	_						
}							
	=						
						•	
	-						
J				ĺ		Started retaining care at elevation 850.1	
	=					ot elevation 850.1	
0400			Top of Soul	Loss			
848.8	.35.6 <u> </u>		Top of Rock LIMESTONE: Dark gray, hard, fossilferaus with laminated	Loss 0.0 Rec 91%			
			rossillerous with laminated seoms.	91%			
	1 1			}			
	_						
	_	LS]		`	
	=						
844.9	39.8.				[']		
U-4.5	- J-3,0,		SHALE: Black, moderately hard with some weathered and				
	Ξ		broken zones.				
			Moderately broken from 844.4' to 843.4'	Loss 0.5			
	_		Vertical fracture, apen, rough, planar from 843.8' to 843.7'				
		SH		34%			
	=		Moderately braken from 843.4' to 842.5'				
	_		Moderately braken, thin bedded from 842.5' to 840.2'				
841.0	44.0						
RH FOR				PROJECT		Don Ohio HOLE NO.	_

PROJECT	Dov	er Dom	INSTALLATION	32.3	CTON F	Hole No. G-9
ELEVATION	DEPTH	LEGEND			BOX OR SAMPLE	PISIRICI OF 3 SHEETS
6	6	ECCENO	CLASSIFICATION OF MATERIALS (Description) 4	ERY	NO.	REMARKS (Drilling Hims, water loss, depth of weathering, etc., if significant)
840.2	44.8	SH	SHALE: (Continued)			
040.2			Evidence of mechonical spin ot 841.9			
	=		Care diameter lass from 841.1' to 841.0'			
				Loss 0.3 Rec 96%] ,	
			SILTSTONE: Sandy, dark gray into gray, moderately hard to hard, sandier with depth.	96%	'	
	-					
	=		Vertical fracture, open, planar rough from 835.7' to 835.4'			
	_					
	-					
				Loss 0.2		
	-			Rec 94%		
		SLS				
	<u>-</u>					
					2	
] =			Loss 0.3 Rec	-	Brake 5' harrel Used
				Rec 93%		Brake 5' barrel, Used short barrel for the remoining port of the hole.
				Loss 0.1		
				Rec 100%		
				Loss 0.0		
				Rec 100%	1	
825.3	60.7		Bottom of Hole	Loss 0.0		
	=					
	=					
	=					
	=					
	=					
	=					
	=					
	— м 1836-			PROJECT	Dover	HOLE NO.

DRILLII	NG LO	G BIVI	ISION eat Lakes and Ohio River	INSTALLATI		RH-EC-		SHEET 1	
1. PROJECT			edt Lokes did Onio Kiver	10. SIZE A				OF 3 SHEETS	
	Dover			11. DATUM FOR ELEVATION SHOWN (TBM or MSU					
2. LOCATION	Ohio	us or Statton	v	***			NGVD 1929		
3. ORILLING		Links		12. MANUF	ACTURER'		ATION OF DRELL		
4. HOLE NO.	(As shown	Unkn on drawina		13. TOTAL	NO. OF	OVER-	DISTURBED	UNDISTURBED	
4. HOLE NO.			G-10a	14. TOTAL				: 0	
5. NAME OF	DRILLER	Kenny	V Olson				ER 863.3 -	862.0	
6. DIRECTION				16. DATE ≱		STA	RTED	COMPLETED	
			0° S 70° W DEG. FROM VERT.	17. ELEVA	TION TOP	OF HOL	02-07-83 886.3	02-08-83	
			00.0 Feet				FOR BORING	97.5	
9. TOTAL DE			<u>25.7 Feet</u>	19. NAME (OF INSPE		0-#		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	5	% CORE	BOX DR SAMPLE NO	rry Ballard Ji	FMARKS	
8	ь	c	(L'escription)		ERY e.	NO.	weathering, e	water loss, depth of itc., if significant)	
			CONCRETE: Peo grovel						
	_		aggregate and some che fragments.	rt	1				
	\neg								
	_								
	_								
	7								
	-								
	=								
	_								
ĺ	Ξ				1				
	-					1			
	=								
	_								
	_								
	\exists								
	-								
	Ξ								
	=	CON			ĺ				
	=					ĺ			
	_						Concrete	cored and	
	=				}		discorded	cored and from 886.3	
							10 650.7	•	
}	_								
	=								
	Ξ								
	_								
}									
	_								
	=								
					1				
]									
	=								
	\exists								
	_								
867.5					PROJEC	J		HOLE NO.	
LRH FORM	J 19 7 C								

DRILLING	LOG	Cont S	heet) ELEVATION "OP OF HOLE 886.3	5		Hole No. G-10o]
PROJECT	Dov	er Dom	, Ohio INSTALLATION	DNIING	ION_	SHEET 2 OF 3 SHEETS	1
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Cascription)	Z CORE RECOV-	BOX OR SAMPLE	REMARKS (Ortiling time, water loss, depth of weathering, etc., If significant)	
	b _	c		ERY •	ND.	9	Ļ.
	_			1	1		-
							E-
	=						F
	-			1			E
	=						E
							E
	_						E
							E
	=						F
							E
	1 =						F
				1			E
							F
	_						F
				1			E
	_						
							E
		CON					E
					[E
							F
] =]		E
	=						F
	=						E
	=						E
							F
}							E
							F
] =						E
	-						
	_						F
					ĺ		E
	=						F
	=						E
	=						F
850.7	37.9 -			Rec		Began Coring	E
	=			Rec 100%			E
849,4	39.3 -		Top of Rock				E
043,4	=		LIMESTONE: Dark gray to block, hard, fossiferous, with thin laminated seoms.	1			E
	-		thin laminated seoms.		ĺ		-
	=		Moderotely broken from 846.2' to 845.9'				E
					1		F
		LS	56° fracture, open, planar, rough from 845.8' to 845.5				E
				Loss 0.0			E
] =			Rec 100%			E
							E
945.0	47,						E
845.0 LRH FOR	43.9 - M 1836-			PROJECT	<u> </u>	HOLE NO.	-
MAY 04			33:55 AM		Dover	Dam, Ohio G-10a	

	DRILLING	LOG	(Cont S	heet) ELEVATION TOP OF	886.	3		Hole N	6-100	
	PROJECT		Dover	Dom, Ohio	INSTALLATION H	UNIING	IQN_D	<u>ISIRICI</u>	SHEET 3 OF 3 SHE	ETS
	ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF (Description)		% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Driffing film weathering	REMARKS m. water loss, depth of n, etc., if significant)	
				SHALE: Block, mode Bodly weothered 836.3 to 836.0						-
		=		836.3' to 836.0 Bodly broken zon 834.8' to 833.8						<u> </u>
		=======================================	SH	Vertical fracture smooth from to 844.2'		Loss				<u>=</u> _
				Severely broken 843.4 to 842.6		0.0 Rec 100%				<u> </u>
	840.7	48.5 =		Thin bedded, mod broken with mu angle fractures to 840.6'	derately Itiple high from 841,7'					E
				SILTSTONE: Sondy, moderately hord, so with depth.						
		=		55° frocture, or smooth from 8 to 832.1'	gen, plonor, 332.5					
		-		Grout coated be at 829.3'						Ē
				Severely broken 829.0° to 828.2	from	Loss 0,0 Rec 96%				
		=								E
							1			
						Loss 0.2				E
			SLS			Rec 98%				Ē
										E
		=								E
										F
		=				Loss				<u>=</u>
						Loss 0.1 Rec 91%				<u>E</u> _
										E
										E
	825.1	65.1—		Bottom of	Hole	Loss 0.3				
		-			.510					E
		=								
		=								· E
198	LRH FORI			13·33 VM	F	ROJECT	Dove	Dam, Ohio	HOLE NO.	00

DRILLI	NG LOG	DIVI	SION	INSTALLATI	ON			SHEET 1	
1. PROJECT	10 100	GC	<u>eat_Lakes_and_Obio_River</u>	10. SIZE A		OF BIT		OF 3 SHEETS	\dashv
	Dover			11. DATUM		VATION	SHOWN (TBM or M		\dashv
2. LOCATION	(Coordinates Ohio	ar Station	J	12 MANUE	ACTI IPER		NGVD 1929 ATION OF DRILL		\dashv
3. ORILLING		Unkn	own_				Unknown	<u> </u>	
4. HOLE NO.	(As shown or	n drawing		13. TOTAL BURDEN	NO. OF C	S TAKEN	DISTURBED 0	:UNDISTURBED	}
5. NAME OF		_	: G-10b	14. TOTAL NUMBER CORE BOXES 3					
6. DIRECTION	OF HOLE	Kenny	Olson	15. ELEVATION GRDUNO WATER UNKNOWN 16. DATE HOLE STARTED COMPLETED					
VERTI	CAL 🛛 INC	LINEO 20	D° West DEG. FROM VERT.	17. ELEVA		OF HOLE	4-7-83	4 - <u>13 - 83</u>	
			00.0 Feet				E 886.3 FOR BORING	97.2	x
9. TOTAL DE		-	<u>26.5 Feet</u> 64.8 Feet	19. NAME (OF INSPE				
ELEVATION	DEPTH	вох	CLASSIFICATION OF MATERIAL (Description)	.s	% CORE RECOV- ERY	BOX OR SAMPLE NO. f.	ry Ballard Jr. REMA Cortilling time. wot seathering. etc	er loss, depth of if significant)	,
•	-	¢	CONCRETE: Pea grave!		8.	7.			+
	\exists		aggregate and same che	rt					E
	\exists								F
J	\exists								E
	\exists								E
	4								F
	ᅼ								F
	\exists						Concrete appea	ored to be	E
							satisfactory by observation wit	visual h no lass	F
	3						recorded.		E
	ᅼ						Cancrete core	d and	-
	\exists						Concrete core discorded from to 852.7'.	n 886.3'	Ė
									F
ľ	╛								E
	3								E
	╡					[F
	三								E
}									þ
	三								E
	=				ł				þ
	=	CON							E
	╡								þ
	=								Ė
	=				}				-
1									F
	\exists								E
	=						l		þ
	\equiv								E
ĺ	╡								
	\exists								-
	=								Ē
	7								-
	Ξ								F
					ĺ				
	Ξ								F
									E
	=								Ė
					ļ				F
	\exists								E
	\dashv								E
	\exists								-
867.5 LRH FORM	20.0								
					PROJEC	т	H	DLE NO.	

PROJECT	Dove	r Dam,	Ohio INSTALLATION	2.3	-	Hole No.	G-10b
· 		. 55,111,				DISTRICT ,	OF 3 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water to, weathering, etc., if si	ss, depth of galffoont)
0	· ·	С.	CONCRETE: (Continued)	+ •	- '	9	
	=						
	\exists						
	\exists		-	1	1		
ļ	긬						
	=						
	\exists				,		
	\exists	ĺ		}			
	=						
ĺ							
	-						
	Ξ						
	\exists						
ĺ	=						
	_						
	\exists						
	Ξ						
		CON					
	=						
	=						
ĺ	_						
							,
	=						
	_						
	=						
	_						
	=						
852.7	<u> 35.8 </u>			Ban		Began Cor	ing
	_			Rec 100%			
	_						
	=						
850.3	38.3		Top of Rock				
	=		Top of Rock LIMESTONE: Dark gray, hard, fossiliferous.				
			60° frocture, plonar rough, grout coated from 846.9' to 846.5.				
			0.0.0 10 0.0.0.		1		
	-	LŞ		1.000		ļ	
				Loss 0.0 Rec 85%			
	=			Rec 85%			
	=						
	Ξ						
845.9	43.0 [–]						
040.9	43.0		SHALE: Black, moderately hard, with some badly weathered zones.	7			
		SH	zones.				
845.0	4	1			1		

DRILLING PROJECT		ver Dam		NSTALLATION			Hole No	G-10b	-3
		ver ban			HUNIUG	IQN_D	ISIRICI		SHEETS
ELEVATION	DEPTH	LEGENO	CLASSIFICATION (Descripti	F MATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	RE (Ortiling time, v	MARKS water loss, depth ic, if significant	or
	b	E	SHALE: (Continue	a) — — —		ηγ.		9	
			Froctured and from 846.31	badiy broken	Loss 0.6				
		SH	845.7' to 84	t clayey from 45.3'	Rec 96%				
	亅 긬					[
842.3	46.8					1			
	=		SILTSTONE: Sand moderately hard, sandier zones and sandstone layers.	y, dark groy, with some] [
			sandier zones and sandstone layers.	thin					
	=								
	=								
	=				Loss				
	=				0.2 Rec 100%				
					100%				
	=								
	E								
	=								
	E.								
		ļ							
]				Loss				
					Loss 0.0 Rec 100%				
	╕	SLS			100%				
						li			
						2			
	╛								
	-								
]]				
	⊣								
	Ξ				Loss 0.0 Rec 100%				
					Rec 100%				
	=								
	日日								
	=								
	Ξ								
	=								
	=								
	Ē. l								
	=				Loss 0.0	,			
825.4	64.8		Bottom o	of Hole	0.0	3			
	=								
	=								
	=								
	Ξ								
	-	Ā			PROJECT				

DRILLI	NG LO	G Gr	ision reat Lakes and Ohia River	INSTALLAT		RH-EC-	·G	SHEET 1	
1. PROJECT	D			10. SIZE A				OF 3 SHEETS	\dashv
2. LOCATION	Dover (Coordinate		n)	II. DATUM		EVATION		עצש א	
3. ORILLING	Ohio			12. MANUF	ACTURER'		ATION OF DRILL		
		<u>Un</u> kn	···· , ···	13. TOTAL	NO. OF		Unknown :DISTURBED	:UNDISTURBED	_
4. HOLE NO.	(As shown imber)	on drawing	G-11	BURDEN	SAMPLE	S TAKEN	: 0	O	
5. NAME OF	DRILLER	Kann		14. TOTAL 15. ELEVA					_
6. DIRECTION			V Olson	16. DATE			ER <u>873.1</u> RTEO	COMPLETED	\dashv
			O° S 70° W DEG. FROM VERT.	17. ELEVA	TION TOP	OF HOLE	886.3	:	\dashv
8. DEPTH OF	S OF OVE	O ROCK	00.0 Feet 28.7 Feet	18. TOTAL	CORE RE	COVERY	FOR BORING	96.1	х
9. TOTAL DE			65,4 Feet	19. NAME	OF INSPE		ry Ballard Jr.		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description)	s	% CORE RECDV- ERY	BOX OR SAMPLE NO.	RF	MARKS water loss, depth of c. If significant)	
•	-	c	CONCRETE: Pea gravel		9.	† .		g	_
	=		oggregale.						
			(Average size pieces ron from 8" to 9")	ging] [
	=								ŀ
									-
	\exists				1				
	=						Concrete on	peared to be	
	_						satisfactory abservation	by visual with no lass	
	=						recorded.		-
									ļ
	コ						Concrete co	ored ond	-
	=						to 853.6'.	000.5	ŀ
1									ŀ
	4				1				-
	크								ŀ
	=								
	=								ŀ
ł	#	2011			1				
	\exists	CON							Ė
	=								-
1	\exists								ŀ
	=								-
	Ξ								ŀ
-									
	\exists								ŀ
ļ	=								
	=								
	三								ļ
	=								
	_=				[ļ
ļ	-								
	_ =								ļ
	=				1				ŀ
}	\exists								
									-
	\exists								ŀ
									-
									.
867.5	20.07								- 1

LRH Form 1836.dgn 8/21/2006 11:02:56 AM

	RE BOX OR Y- SAMPLE NO.	DISTRICT RE (Orilling line, weathering, e	OF 3 SHEE
ERIALS RECOVERY	SAMPLE NO.	E (Orlifing Unite, weedfaring, a	
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
			an Coring
		Dec.	un Coring
Rec 100%	;	Deg	
100%	χ.		
y, hord,			
Loss 0.0	s		
Rec 96%			
30%			
ately hard			
othered			
	ately hard oathered	otely hard athered	

DRILLING PROJECT				INSTALLATION	886.3	•	Hole No.	G-11 SHEET	3
	Do	ver Doi	m, Ohio		HUNIING	IQN_Q	SIRIÇI	- 1	SHEETS
ELEVATION	DEPTH 6	LEGEND	CLASSIFICATION OF (Description)	MATERIALS	X CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Drilling time, wan weathering, etc.,	NRKS ler loss, depth if significant	or)
_	1.1		SHALE: (Continued)		Loss				
		SH			Loss 0.2 Rec				
	=				Rec 92%				
843.0	46.1		Sh TSTONE, Seed		_				
			SILTSTONE: Sandy, moderately hord.						
			3.7' Sandstone, r groined from to 829.9'	medium B33.6'		1			
			0.8' Sandstone, r grained from to to 828.6'						
			Grout coated be at 833.6 and 8						
			at 833.6 and 8	329.71					
					Loss 0.4				
					Rec 96%				
					1				
	_							,	
	_								
•	-				Loss				
	_				Loss 0.2 Rec				
	=	SLS			Rec 98%	2			
	_								
	=				Loss		•		
					Loss 0.1 Réc				
	=				Rec 94%				
	=								
	Ξ								
	=					3			
	=								
	=								
R24 P	65.4				Loss 0.3				
824.8	-		Bottom of	Hole	0.5				
	_								
	=						,		

					_			
DRILL	ING LO	G DIV	ision reat Lakes and Ohio River	INSTALLATIO)N			SHEET 1
1. PROJECT	_		TOTAL CORES ON ON ON THE PROPERTY OF THE PROPE	10. SIZE AN		RH-EC-		OF 3 SHEETS
\ 1.00201	Dover	Dom	_	II. DATUM				
2. LOCATION		s or Station	n)	III. DATOM	TOR EL		shown <i>itbii or</i> IGVD 1929	MSL)
3. DRILLING	Ohio			12. MANUFA	CTURER		ATION OF DRILL	
J. DRILLING	AGENCT	Unkn	nown	17 7074	NO 05 4		Unknown	<u>-</u> -
4. HOLE NO). (As shown (umber)	an drowing		13. TOTAL I BURDEN	SAMPLE	S TAKEN	DISTURBED	: UNDISTURBED O
5. NAME OF			: <u>G-12</u>	14. TOTAL	NUMBER	CORE BO		-
		Kenny	y Olsen	15. ELEVAT	ION GRO	TAW GRU	ER 873,1	
6. DIRECTIO			0° 5 70° W DEG. FROM VERT.	16. DATE H	OLE	STA		COMPLETED
				17. ELEVATI	ION TOP	OF HOLI	886.3	
			00.0 Feet	18. TOTAL	CORE RE	COVERY	FOR BORING	92.6
8. DEPTH D			30.8 Feet	19. NAME O	F INSPE	CTOR		
3. 101AL U	EPIN OF H	OLE	65.8 Feet		* COOC	Jer	ry Ballard Jr.	ARK\$
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description)	.s	ŘEČOV-	BOX OR SAMPLE NO.	iDrilling time. w	oter loss, depth of if Significant)
•	6	c	CONODETE: With D		9.	NO.		<u> </u>
	ΙĪ		CONCRETE: With Pea gra	vel				
	4		22 3	1				
	l ∃							
	=							
	=							
				1				
	=							
							Concrete on	peored to be
							satisfactory	beared to be by visual with na loss
	=						observation recorded.	with no loss
	=			-			Concrete co	red and
	=						Concrete co	om 886.31
	ーコ						to 854.9'.	
						ĺl		
ì								
	=							
	_			1				
	ᅵ 긕	CON				' I		
}								
	7							
	=							
	=							
	=							
	=							
				J				
	\exists							
	=							
867.5	20.0							
867.5 LRH FORI	20.0 = VI 1836		No.		PROJECT			IOLE NO.

LRH Form 1836.dgn 8/21/2006 11:04:38 AM

PROJECT	Dov	er Dom	n, Ohio				SHEET	2
					BOX OR	DISTRICT	OF 3	SHEETS
ELEVATION	0EPTH	LEGENO c	CLASSIFICATION OF MATERIALS (Description)	RECOV-	SAMPLE NO.	RE (Drilling filme, w weathering, et	MARKS rater lass, depth ic., If significant)	ď
			CONCRETE: (Continued)	† <u> </u>	+		•	
	=]			
	=							
	. =							
	=				}			
	=							
	=				1			
]							
	=							
]		,	1		ļ		
	[]	CON	-		1			
]							
	l∃							
	=							
	l∃							
]							
854.9	33.4			Rec 100%		Bego	n Coring	
	亅			100%				
	=							
853.4	35.0		Top of Rock LIMESTONE: Hard, dark gray, fossilferous, with thin laminations.	1				
	=			1				
			70° frocture, open, plonar, rough from 853.3' to 852.6'	Loss 0.0				
	=			Rec 98%				
		LS	55° froature, open, planar, irregulor, rough, moderately broken from 850.4' to 850.0'					
			.0 000.0					
	~=							
	=							
848.9	39.8		SHALE: Block mades to be		1			
			SHALE: Black, moderately hard.					
	=		Broken ond portiolly weathered zone from 847.5' to 846.5'.					
				Loss 0.1				
	<u> </u>		Thin grouted closed fractures from 844.3' to 844.1' and 848.1' to 847.5'	Rec 89%				
	=	SH						
	=		60° frocture open, plonar, smooth from 848,1' to 847,9' ond from 847.8' to 847.3'					
	=							
845.0			Moderately broken, thin bedded from 847.5' to 845.2'					
	M 1836-	Δ		PROJECT		Dorn, Ohio	HOLE NO.	

DRILLING	LOG ((Cont S	heet) ELEVATION TOP OF H	IOLE	886	.3	Hole No	o. G-12]
PROJECT	Do	over Da	m, Ohio	INSTALLATION	HUNIING	IQN_(NSIRICI	SHEET OF 3	3 SHEETS	
ELEVATION .	ФЕРТН	LEGEND	CLASSIFICATION OF IN	MATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	RE (Oriting time, weathering, e	MARKS water loss, depth atc. If significant		
3		ę	SHALE: (Continued) Vertical fracture, smooth from 8 to 844.7'	open, plonar	•	,		<u> </u>	_	<u></u>
		SH	Grout coated bed closed and irreg 844.2', 844.15',		Loss 0.5	1				E
842.6	46.5 -		Mechanical spin 10:	ss ot 843.3'	0,,,					
.	——————————————————————————————————————		SILTSTONE: Sandy, maderately hard, wit sandier zanes.	dark groy th some						
	1									
										1111
					Loss 0.3 Rec 94%					
	1111				94%					
	-									
		SLS		•						=
		323			Loss 0.3	2				
					Rec 96%					<u> </u>
										E
	1									
	-				Loss 0.2					
					Rec 80%					
	1									E
826.2	64.0		SILTSTONE: _ight gr coarse grained.	ay, sandy,		3				E
824.5	65.8	SLS			Loss 1.0					
J <u>Z</u> 7.J	-		Bottom of H	lole	1.0					<u></u>
	1									
LRH FORM MAY 04 B3 Borings.dgn					PROJECT	Dover	Dam, Ohio	HOLE NO.	G-12	上

-									
ĺ	DRILL	ING LO	G G	ision reat Lakes and Ohio River	INSTALLATI	CELI	RH-EC-	-G SHEET 1]
	1. PROJECT				10. SIZE A				+
	2 1001710		r Dom		11. DATUM				1
	2. LOCATION	Ohio	us or Statlor	ער	12 141111	ACT I ICCC		NGVD 1929	
	3. DRILLING		Unkr	nown				UNKNOWN	
	4. HOLE NO	. (As shown	_		13. TOTAL BURDEN	ND, OF	DVER-	DISTURBED SUNDISTURBED	1
	5. NAME DF			<u>G-13a</u>	14. TOTAL				-
	6. DIRECTIO		Kenny	y Olsen	15. ELEVA	TION GRO		ER	1
				O" S 70" W DEG. FROM VERT.	16. DATE I	HOLE	STA	COMPLETED 12-09-82	7
				00.0 Feet	17. ELEVA			886.3]
	8. DEPTH D	RILLED INT	O ROCK	31.8 Feet	19. NAME		_	FOR BORING 94.6 %	4
	9. TOTAL D			65.1 Feet	19. 11,446		Jei	rry Bollard Jr.	l
	ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Discription)	.\$	% CORE RECOV-	BOX OR SAMPLE NO.	REMARKS (Oriting time, water loss, depth of weathering, etc., if significant)	1
	0	_ 6	t	d	· -	ERY e.	ND. f.	o	
		=		CONCRETE: With pea gra aggregate.	vel		ł		
		-						`	F
		=				١,			F
		=							E
		=							
		~							Ē
									-
									F
									F
						ĺ		Concrete oppeared to be	<u> </u>
		=						Concrete oppeared to be satisfoctory by visual observation with no loss	Ē
	l .							recorded.	느
							í l		F
]	_						Concrete cored and	E
								discarded from 886.3' to 858.0'.	E
									F
		_							E.
		_							F.
									F
	}	=		,					E
			CON						
									F
									E
									=
									<u> </u>
									E
		=							Ē
									E
		_							E
									F
									E
									E
									F
		=							F
		-							E
		_							E
		· _							
		=							E
									E
		=							_
	867.5 LRH FOR	20.0							F
	LRH FOR	м 1836				PROJEC		HOLE NO.	
LRH F	orm 1836.	dgn 8/2	1/2006	11:06:24 AM		DOV	er Dor	m. Ohio G-13a	
		-							

DRILLING			Incres at a trans	86.3		Hole No.	G-13o	
, 1100001	Dov	er Dam		HUNTING	TON C	DISTRICT	SHEET 2 OF 3 SHEET	s
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Cascription)	% CORE	BOX DR SAMPLE	REMAI (Drilling time, wate weathering, etc., i	RKS r fass, depth of	
• _	-	ç	CONCRETE: (Continued)	ERY	NO.	9	- Signar rougher	_
	=							
	=			}				
			•					
	-							
		' J						
				1				
] =							
	111	CON						
	_							
	=							
	=		•					
858.0	30.1					Begon	Coring	
				Rec 100%				
	-=							
	- -							
	=		•					
855.0	<u>3</u> 3.3 -		Top of Rock					
			LIMESTONE: Black into dark gray, hard, fossiliferous, with thin laminations.					
	-		Fault zones from 854.8 to 854.1 and 851.3 to 850.6					
			854.1 and 851.3 to 850.6	Loss 0.0]			
	=	LS		Rec 95%	}			
	=				1			
	-							
850.3	38.3				Ì			
	=		SHALE: Block moderately hard.					
	Ξ.		Weathered and broken from 847.5 to 846.5	Loss 0.2				
			Thin grauted viens from 846.5 to 846.3	0.2 Rec 95%	-			
			510.0 10 070.3	95%				
	131111111111111111111111111111111111111	SH		Loss 0.1				
				Rec 88%				
				55%				
	-							
	-							
845.0	44.0				2			
LRH FOR	M 18 36-	A		PROJECT		Dom, Ohio	IOLE NO. G-13a	-

DRILLING PROJECT				INSTALLATION	886.3	_	Hole No.	G-13a	3
	Do	ver Dorr	n, Ohio		НПИПІЙС	IQU_DI	SIRICI	of 3	SHEETS
ELEVATION •	DEPTH 6	LEGEND	CLASSIFICATION O	F MATERIALS on)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Orilling time, wate weathering, etc., 9	RKS or loss, depth of significant	of 1
	=		SHALE: (Continue	g)					
] =	' <u>.</u>							
	=	SH							
					Loss				
842.8	46.3		SILTSTONE: Sand	y, gray,	Loss 0.6				
			SILTSTONE: Sand moderately hard, with some sandie	interläyered r zones.	Rec 94%				
			55° fracture, planar from to to 833.2'	ggęn rough,					
			to 833.2	555.5					
	=								
	-								
					Loss 0.3	2			
					Rec 96%				
	_				.				
	· =								
					1				
		SLS							
	=				Loss				
					Rec 90%				
	=				90%				
	=								
	=								
	[=								
	=								
	=								
					1 099				
	=				Loss 0.5 Rec	3			
					Rec 100%				
	=								
825.5	64.7 -		CH TOTOME 13:44	arau acad	\ .				
	65.1	SLS	SILTSTONE: Light coarse grained.	gray, sanay,	Loss 0.0				
	=		Bottom	of Hole					
	=								
	=								
	=	i							
DIL COR	M 1836-	Α			PROJECT		Dom, Ohio	HOLE NO.	G-130

DRILLI	NG LO	G Gr	ision eat_Lakes_and_Ohio_River	INSTALLAT		RH-EC:	·G	SHEET 1 OF 3 SHEETS	
1. PROJECT	Dover			10. SIZE A	NO TYPE	OF BIT	NX	JOF J SHEETS	
2. LOCATION			V	II. DATUM	FOR EL		shown <i>itew or</i> √GVD 1929	W S()	
3. DRILLING	Ohio AGENCY			12. MANUF	ACTURER	S DESIGN	ATION OF DRILL		7
		Unkn		13. TOTAL BURDE	NO. OF	OVER-	Unknown :DISTURBED	CUNDISTURBEO	\dashv
4. HOLE NO.	_	on drowing	G-13b		_			: <u>Q</u>	_
5. NAME OF	DRILLER	Kenny	/ Olsen	14. TOTAL 15. ELEVA			ER 873.1		
6. DIRECTION		Ē	D° S 35° W DEG. FROM VERT.	16. DATE		STA	RTED	COMPLETED	_
				17. ELEVA	TION TOP	OF HOLE	3-29-83 886.3	4-7-83	7
8. DEPTH DE	RILLED INT	O ROCK	00.0 Feet 31.4 Feet				FOR BORING	84.8	Z.
9. TOTAL DE			64.4 Feet	19. NAME		Jer	ry Ballard Jr.		
ELEVATION .	DEPTH 6	LE GEND	CLASSIFICATION OF MATERIAL (Description)		% CORE RECOV- ERY 8.	SOX OR SAMPLE ND. f.	REL	MARKS ofter loss, depth of if significant)	
	=		CONCRETE: With peo gro some chert,	vel and					E
	_=								
									E
ĺ	_ =								E
									-
ł	=								E
									-
	\exists								E
ļ									F
	=				ĺ				E
									F
	=								E
}							Concrete app	peared to be by visual with no lass	E
	\exists					}	observation v	with no lass	F
]					1				E
	=					1 1			F
					1		Concrete ca	red and	E
	3					lí	discarded from to 857.3".	om 886.3'	-
	ᆿ				1				F
ĺ	\exists	CON				[F
	긕				1				E
ĺ	\equiv								F
	-				ĺ				E
}	=								E
	긬								-
]	4								E
	크								F
	\exists				1				E
ļ	-								F
	\exists								F
									E
	=								F
	_ =								E
}	≓		•						E
	Ξ								F
	=								E
									F
									F
					1				E
	-					, ,			
ł	-							*	F
867.5	20.0								E

1983 Borings.dgn 11/15/2006 8:16:37 AM

1	G LOG	(Cont S		886.3		Hale No.	G-13b
PROJECT	Do	ver Dar	n, Ohio	מאוושעו	SIQN_D	USIRICI	SHEET 2 OF 3 SHEETS
ELEVATION	DEPTH	LEGENO	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARI (Drilling filme, water weathering, etc., If	
•		CON	CONCRETE: (Continued)		f'		
857.3 855.3	30.9 =		Top of Rock LIMESTONE: Dark gray to black hard, fossiliferous.	Rec 100%		Began	Coring
850.7	37.9	LS	Multiple high angled, grout cated, rough, nanplanar froctured zone from 852.4' to 851.4'. 70° High angle, planar, rough grout casted fracture from 855.2' to 854.4'	Loss 0.0 Rec 100% Loss 0.0 Rec 100%	1		
		SH	SHALE: Black, moderately hard. Braken zane with multiple 40°-60° fractures, raugh and nanclanar. Badly broken and weathered zones from 847.3' to 846.1'.	Loss 0.0 Rec 81%			
846.1	42.8	SLS	SILTSTONE: Sandy, gray moderately hard, with some sandier zones.		2		

DRILLING PROJECT			ım, Ohio				G-13b SHEET 3
					T	DISTRICT	OF 3 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARI (Orliling films, wofs- weathering, etc If	(S loss, depth of slant(loant)
•	- b		SHALE: (Continued)		177	9_	
	_						
				1 000			
	=			Loss 0.8			
	-	SH .		Rec 91%			
		0,,					
				1			
840.5	48.7						
<u> </u>	70.7		SANDSTONE: Gray, medium grained, moderately hard.				
		5.0	grained, moderately hard.				
]	SS		Loss			
838.8	50.5 -			Loss 0.4 Rec			
	-		SILTSTONE: Sandy, gray in	to Rec			
	_		SILTSTONE: Sandy, gray in dark gray, moderately hark gradually becoming shaley (mare fissle) with depth.	~, 			
			deput.		_		
			,		2		
					}		
	-			1			
	=						
				Loss			
		SLS		Loss 0.7 Rec	-		
	=			80%			
	-						
	-			1 000			
	-			Loss 0.8			
	_			Rec 75%			
829.4	60.5		SILTSTONE: Grav. sondv				
	-		SILTSTONE: Gray, sondy, medium to coarse grained moderately hard.	1,			
	_						
				Loss	3		
	=	SLS		0.8 Rec 20%	1		
	-			20%			
	=						
				Loss 1.6			
825.8	64.4		Bottom of Hole	1.6			
		İ					
	=		,				
	=						
	=						
	_						
	_	I					

DRILLI	NG LO	G BIV	ISION Teat Lakes and Ohio River	INS	TALLAT	ON CELE	RH-EC:	-G	SHEET 1	
1. PROJECT				10.	SIZE A		OF BIT		OF 3 SHEETS	
2. LOCATION	Dover		N	-			EVATION	SHOWN (TBM or	U SL)	_
	Ohio	- Stotton		12.	MANUF	ACTURER'		NGVD 1929		
3. DRILLING	AGENCY	Unkn	lown					Unknown		
4. HOLE NO.	(As shown	on drawing		13.	BURDEN	NO. OF (OVER- S TAKEN	: DISTURBED : O	: UNDISTURBED O)
5. NAME OF			: G-14a	14.	TOTAL	NUMBER	CORE BO			
	_	Kenny	<u> Olsen</u>	15.	ELEVA	TION GRO	UND WAT			
6. DIRECTION			O° S 70° W DEC. FROM VERT.	16.	DATE !	HOLE	STA	RTED 2-25-83	OMPLETED 3-2-83	
				17.	ELEVA	TION TOP	OF HOL			
8. DEPTH DE	RILLED INT	D ROCK	00.0 Feet 13.5 Feet	_				FOR BORING	90.8	χ
9. TOTAL DE			65.1 Feet	19.	NAME	OF INSPE		rry Ballard Jr.		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description)	5		% CORE RECOV- ERY e.	BOX OR SAMPLE NO. f.	RÉM. (Drilling time: wo weathering, etc.	ARKS iter loss, depth of , if significant)	,
•	-	¢	CONCRETE: Pea gravel aggreagate and Chert.	_		-	7.		-	_
	7		aggreagate and Chert.							
	=							*		
}										
	-					Ì				
-										
	_									
	-									
	\neg									
}										
	_							Concrete oppe	ared to be	
						ĺ		Concrete oppe sotisfactory b abservation wi	y visuol	
	\equiv							recorded.	tn no loss	
ł	\exists		[
	\exists]				
	_									
			1					Concrete cor-	ed and	
ł							ĺ.,	Concrete cor- discorded fro to 839.41.	m 886.3'	
	=	CON								
	=	CON								
J							,			
	=							1		
						ĺ				
	=									
	_=									
	=									
	_					1				
	_									
	1									
	\exists									
	=					ľ				
	_									
							[
	_)				
	_									
							[.			
	-									
}	_									
	Ξ									
	_									
			l e e e e e e e e e e e e e e e e e e e							- 1
	\exists									
867.5	20.0									

,

DRILLING	LOG ((Cont \$	heet) ELEVATION TOP OF	555.3			Hole No.		0
PROJECT	Dov	er Dom	, Ohio	INSTALLATION HUN	ITING	TON D	ISTRICT	SHEET OF 3	2 SHEETS
ELEVATION	0ЕРТН	LEGEND	CLASSIFICATION OF (Exscription)	MATERIALS X REI	CORE COV- ERY	BOX OR SAMPLE NO.	RE (Drilling time, w weathering, at	MARKS nater loss, depth ic, if significent	ør ·
		<u> </u>	CONCRETE: Contin	ued)	•	'		9	
1 1				1					
	1								
	∃				- 1				,
1 1	_								E
				[J			
	\exists				J				<u> </u>
	_								-
	4								-
	= =								
									-
	Ⅎ								E
	_ =			1					-
									F
	=======================================			1					ļ
			,						E
									ļ.
	1								-
				[E
	\exists								
							·		-
									E
									F
		CON							E
[
	\exists								
	크								
	\exists								F
									E
	Ξ								-
				1					E
	\exists					ł			-
	Ξ								F
	-								E
				}					ļ.
	1111								E
	=								
					,				F
	=			1					
	\exists								-
									E
					J				
	Ξ			1					-
	_								F
				-					E
									-
									Ē
	=								
1 0450	44.0				JECT				-
845.0 LRH FORM								HOLE NO.	

PROJECT	Do	ver Don	n, Ohio	INSTALLATION	LUNTING	TON C	USTRICT	SHEET 3
	_						NSIRICI	OF 3 SHEETS
ELEVATION	ОЕРТН	LEGEND	CLASSIFICATION OF M (Description)	IATERIALS	X CORE RECOV- ERY	BOX OR SAMPLE NO.	REMAR) (Drilling time, woler weathering, etc., if	(S loss, depth of significant)
<u>e </u>	<u> </u>	E .	CONCRETE: (Continu	ued)		1	9	
					-			
	_							
	=				1			
)		
	_	CON						
	=							
	=							
	=							
839.4	49.9 -						Began	Coring
					Rec 78%			-
837.8	51.6		Top of Past					
837.8	51.6		Top of Rock LIMESTONE: Dark gr hard, fossiliterous.	ay to black	ί,			
	=	LS	nara, rossiliterous.				Loss occurriulor of lass probabl Rock band are	tive. Majority
836.9	52.6						Rock bond are	a.
636.9	52.6		SHALE: Sandy, dark	gray into	-			
ĺ			SHALE: Sandy, dark gray, moderately ha sondier zones.	rd, with som	nel			
	-	i (Grouted fracture 836.2'to 835.9' foult.	from				
J			foult.	possione	Loss			
	Ξ		More Shaly from to 830,2'.	832.3'	Loss 1.1 Rec			
	=				Rec 96%			
ſ	=	SH						
	=					1		
l	-							
	_							
830.2	59.7		SILTSTONE: Cray	- d t t	Loss 0.2			
	_		SILTSTONE: Gray, m hard, sandy, medium grained.	to coarse	Rec 98%			
	=		•	vith arout				
			Medium bedded v cooted planes fi 827.9' to 827.3'	om .				
	=							
		SLS						
	=							
	=							
	=							
825.1	55.1—				Loss 0.1	2		
	-		Bottom of Hole	-				
	Ξ							
	-						,	
	=							
RH FOR	_						Dam, Ohio	

DRILLI	NG LO	G Gr	SION eat Lakes and Ohia River	INSTALLA		RH-EC-	-G	SHEET 1	
1. PROJECT	D-:		The same states	10. SIZE	AND TYPE			OF 3 SHEETS	-
2. LOCATION	Dover (Coordinate		ν		M FOR EL	EVATION	SHOWN ITBM or M	(SL)	
	Ohio			12. MANI	FACTURER		NGVD 1929		\dashv
3. DRILLING	AGENCY	Unkn	own				Unknown	<u> </u>	4
4. HOLE NO.	(As shown	an drawing		BURD	L NO. OF (EN SAMPLE	OVER- S TAKEN	:DISTURBED O	: Q	
5. NAME OF		_	<u>G-14</u> b	14. TOT/	L NUMBER	CORE BO			
6. DIRECTION	OF HOLE	Kenny	/ Olsen		ATION GRO				
			0° S 70° W DEG. FROM VERT.	15. OATE			3-11-83	3-17-83	
			00.0 Feet		ATION TOP		000.0]
8. DEPTH DR	ILLED INT	O ROCK	13.4 Feet		OF INSPE		FOR BORING	95.5	X.
9. TOTAL DE	PTH OF H	10LE	65.2 Feet			Je	rry Bollard Jr.		╛
ELEVATION .	DEPTH 6	LEGEND c	CLASSIFICATION OF MATERIAL (Description)	s	% CORE RECOV- ERY e.	BOX OR SAMPLE NO. f.	REMA (Orliting time, wat weathering, etc., g	er loss, depth of if significant)	
	=		CONCRETE: Dea gravel aggreogate and Chert.		 				卡
			-99.0090to ond One (,		,				E
									E
									-
	\Box								E
	_								F
									F
	Ξ]			F
	_								-
	Ë								F
	_ =								-
ł	=								=
	=						Concrete opped	red to be	F
							satisfactory by observation with	visuol	F
	\exists						recorded.	110 1033	F
	\exists								Е
	_				ĺ				E
	=								E
							Concrete core	ed and	
	Ⅎ				ĺ	J	Concrete core discarded from to 839.7'.	n 886.3'	E
	_						(0 639.7.		<u></u>
ĺ	_	CON]		F
	7				1				F
									F
ĺ									F
			1				}		F
	Ξ								E
									E
									E
}									E
	_								F
	_								
									F
ļ									-
							ļ		F
	=					}			þ
		1							F
									F
	_						[F
	_								F
	_	1							F
	_				1				-
,	_	1					1		F
	-								
867.5 LRH FORM	20.0				PROJEC			DLE NO.	Ē

DRILLING			1166()	ELEVATION	-	INSTALLATION	886.3			Н	ole No		G-14b	
	Dover	Dam, C)hio			- ALCATION		ING	TON E	ISTRIC	<u> </u>		SHEET OF 3	2 SHEETS
ELEVATION	DEPTH	LEGEND		CLASSIFICAT	TION OF lescription)	MATERIALS	X C REC EF	ORE OV-	BOX OR SAMPLE NO.	(Or	Ri Illing IIma, eathering,	EMARKS World to elg. If si	ss. depth lonificant	of 3
•	ь —	ε	CON	ICRETE: (Contin	ued) —		•	77.			9		
	=													
							- }							
	=													
	_						- 1							
	_													
	_													
	-							ĺ						
	=													
								ı						
	_	CON					ĺ							
		СОИ												
	_													
	_						- 1							
	_						Ì							
								-						
			ı				,							
	=													
	_													
	-													
	111													
	_													
	=													
	=													
845.0 LRH FORI MAY 04 form 1836.	44.0													
RH FOR	d 1836-	Α					PROJ	ECT	Dove			HOL	E NO.	G-14b

DRILLING PROJECT				INSTALLATIO				Hole N		G-14b	3
_	Do	ver Da	m, Ohio					SIRICI		of 3	
ELEVATION •	DEPTH b	LEG EN D		TION OF MATERIALS bacription)		% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Orilling tim weathering	REMARKS 18. woter k 1. etc. if s	ss. depth o ignificant)	•
	_		CONCRETE:	Continued)							
	_										
	=										
] =										
		CON									
]	0011									
839.7	49.6							Be	gan Co	oring	
						Rec 96%					
836.7	51.8		Top of R	ock							
			SILTSTONE:	Sandy, dark gro oderately hard, zones.	y with						
			some sandier	zones.	WILL						
			Broken zo to 836.9	ne from 837.2 '.	:'						
						Loss					
					}	Loss 0.2					
		SLS				Rec 94%					
		500									
	_										
							1				
830.9	59.0										
	-		SILTSTONE: hard, sandy	Gray, moderate nedium to coo	y irse	0.3 Page					
						Rec 96%					
	, =		B30.5' to	Shale layer from 829.9' and from 829.3'.	m m						
	=		029.4. (0	025.3.							
	-	SLS.									
	=										
						Loss 0,2 Rec 100%					
	_					100%	2				
825.0	65.2		5			Loss 0.0					
			Bottom (of Hole							
	_										
	=										
RH FOR	M 18 36.	Δ				ROJECT	-	Dam, Ohio	нок	E NO. (

	NG LO		sion eat Lakes and Ohio River	INSTALLAT	CELF	RH-EC-		SHEET 1
1. PROJECT	Dover	Dam		10. SIZE				WE(1)
2. LOCATION	(Caardinate Ohio	s or Station	v				IGVD 1929	■ 5 <i>U</i>
3. DRILLING		Unkn	Own .	12. MANUF	ACTURER'		ATION OF DRILL	
4. HOLE NO	. (As shown		fille	13. TOTAL	NO. OF O	OVER-	DISTURBED	UNDISTURBED
ond file no			. G-15	14. TOTAL			· 0	·
6. DIRECTION	N OF HOLE	Kenny	Olsen	15. ELEVA	_			0.45. 5750
			D° S 70° W. DEG. FROM VERT.	16. DATE		<u> </u>	3-3-83	3-10-83
			00.0 Feet	17. ELEVA			FOR BORING	96.4
8. DEPTH DI 9. TOTAL DE			19.6 Feet	19. NAME		CTOR		90.4
			64.8 Feet		% CORE	Jer BOX OR	ry Ballard Jr. REM	ARKS
ELEVATION	DEPTH	LEGENO	CLASSIFICATION OF MATERIAL (Description)	.5	RECOV- ERY	BOX DR SAMPLE NO. f.		iter loss, depth of , if significant)
			CONCRETE: Pea gravel aggreagate and Chert.		 "			·
	=		30 g 3					
	E							
	=							
	l ∃							
	_=]			,
	1						Connects	
ĺ							Concrete appr satisfactory b abservation w	eorea to be y visual
					ĺ	}	recorded.	10 1055
i								
							Concrete con	red and
	╡				Ì		discarded fro to 843.8'.	om 886.3'
	E.							
	=				ĺ			
	=							
		CON			1	li		
		00.1						
]			
	Ξ							
	-							
	=							
	E							
	=							
867.5	20.0							
RH FORI	M 1836			•	PROJEC	τ <u>rer Do</u> n	H	IOLE NO. G-15

DRILLING PROJECT					INSTALLATION	86.3 ————		Hole No.	G-15	2
	Dove	r Dom,	Ohio			HUNTING		ISTRICT	of 3	
ELEVATION 0	DEPTH	LEGEND		CLASSIFICATION OF (Description		% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Dritting time, wot weathering, etc. 9	RKS er loss, depth If significan	of I)
	-		CON	CRETE: (Conti	nued)					
	_									
	1.1									
	=		l							
			ĺ				1			
						- }				
	=									
	, -									
	=									
	=									
	=		1							
			l							
	=	CON								
,	⋾									
	=		ĺ							
	=					ĺ)			
	=									
			ĺ							
	=									
	=									
]			
	=					ł				
	_									•
	=									
	=									
	_=									
] =									
	_=									
	=									
] =									
	=]								
	=									
	=	}	}							
	=									
	-									
	=									
	-	1								
8450	440									
845.0 RH FOR MAY 04 orm 1836.	144.U					PROJECT		Dam, Ohio	HOLE NO.	

ROJECT		Cont S		NSTALLATION	C STATE		Hole No.	G-15 SHEET	3
	0046	Doin,	Office	<u>.</u>			SIB(CI_	or 3	SHEETS
ELEVATION	DEPTH	LEGEND ¢	CLASSIFICATION OF M ((Nescription)		Z CORE RECOV- ERY	BOX OR SAMPLE NO.	REMI (Drilling lime, was weathering, etc	er loss, depth If significanti	or
			CONCRETE: (Continu	ed)					
843.8	45.2						Bego	ın Coring	I
					Rec 98%				
]			
		CON							
						• [
	=								
839,7	49.6 -		Top of Roc SILTSTONE: Sandy, a	ark arav.					
			SILTSTONE: Sandy, o moderately hard, wit sandier zones.	h some	0.1				
			Moderotely broker planes with breo	bedding ks 0.03°to	Rec 100%				
	Ξ		0.1' average space between 839.1' to	sing 836.3'		1			
			Moderotely broker bedding planes s	n with					
	1		bedding planes s 0.02' to 0.2' from 834.3' to 833.4'	n .					
			Severely broken (833.4 to 831.8	rom					
		\$LS							
		323							
	=				Loss				
	=				Loss 0.0 Rec 91/	}			
	_				91%				
	=								
	=								\
831.8	58.0		SILTSTONE: C		4				
	=		SILTSTONE: Groy, m hard, sandy, medium grained.	to coarse					
	-=				1				
			SHALE, silty, dork bedded, with thin Sandstone string throughout from 829.1	light groy gers 829.4° to	Loss 0.4				
			829.1		0.4 Rec 96%				
		SLS				2			
	=								
	=								
	_=								
805 -	-				Loss 0.2				
825.4	64.8		Bottom of Ho	ole	0.2				
	=								
	=								
	=								
	=								
	=								

3	NG LO		ision eat Lokes and Ohio River	INSTALLATI		RH-EC-	G			HEET 1	
i. PROJECT Dover Do	ım			10. SIZE A					ID 3" I	HOLLO	
2. LOCATION	(Coordinate.			II. DATUM NG	VD 29	EVATION	ZHOMN	17.5	BM or M	ISLI	
N 32673 3. DRILLING		E 2301		12. MANUF	ACTURER"	S OESIGN	ATION O	DRILL	CI	 МЕ 45	
4. HOLE NO.		HC NL		13. TOTAL	NO. OF	OVER-	:DIST	URBED	:01	NDISTURB	ED
and file nu	mber)		: C-04-1	14. TOTAL	NUMBER				3 :		0
5. NAME OF	DRILLER	BRAG	G	15. ELEVA							
6. DIRECTION			O OLG. FROM VERT.	16. QATE ≯	HOLE	STA	RTED 6/24	/04	COMP	LETED 6/24/	/04
			4.2 Feet	17. ELEVA			E_932	.21 Fe	et		
B. DEPTH OF				18. TOTAL 19. NAME (FOR BO	RING			98.8
9. TOTAL DE	PTH OF H	IOLE	73.3 Feet	19. NAME (OF INSPER		TEWAR	T			
ELEVATION 0	ОЕРТН 6	LEGEND	CLASSIFICATION OF MATERIAL (Description)	L\$	MC	ıı	PL	% •4	X SAND	7 -20D	BLOWS
931.8	0.4	OL	ORGANIC CLAY WITH SAND	OL),	52.1						WН
			br. and gr., low pl., ve. msi								3
	-		CLAYEY GRAVEL WITH SA gr. and br., low pl., mst., o rau. gravel, c. to f. sand	ng. to	1						4
	_ =	GC	rau. graver, c. to 1, sand		8.2	32	22				4
											3
929.2	3.0				6.3						2
	Ξ		LEAN CLAY (CL), gr., low w/wd. silty SH	pl., dry,	Z CORE	BOX OR		L	EMARKS		25
000 -		CL			RECOV- ERY	SAMPLE NO.	(Dr	liling time, eathering.	elc_if sign	t. depth of niffcont)	52
928.0	4.2		SHALE: Soft to mod. hard		PC 0	<u> </u>					50/0.2
	_=		silly to sondy.	i, gray,	REC 79%	′					
			Slight weothering from to 926.0.	928.0							
	=			Verv		1					
			Bedding plane breaks e 0.2' Iron: 928.0 to	924.1.	RQO 0%	,					
			Increosingly silty with d from 925.6 to 92	epth I 5							
	_	SH	32.5.5 to 32								
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	эп			L 0.8						
					REC						
					100%						
	\exists										
	Ξ					2					
	-					-					
0245	10 7 7				ROD						
921.5	10.7		CANDCTONG		RQD 93%	•					
921.5	10.7		SANDSTONE: Med. to coor	se ceous,	RQD 93%						
921.5	10.7		SANDSTONE: Med. to coor grained, light gray, mica hard, occassional shale stringers, crosbedded.	se ceous,	RQD 93%						
921.5	10.7		grained, light gray, mica hard, occassional shale stringers, crosbedded. Gray shole zone from	ceous,	ROD 93%						
921.5	10.7		grained, light gray, mica hord, occassional shale stringers, crosbedded. Gray shole zone from la 920.1.	920.9				፟	6/24/	<u>′04</u>	
921.5	10.7		grained, light gray, mica hard, occassional shale stringers, crosbedded. Gray shole zone from	920.9	L 0.0			∇	6/24/	<u>′04</u>	
921.5	10.7		grained, light gray, mica hard, occassional shale stringers, crosbedded. Gray shole zone from to 920.1. 45° Fracture, iran stai	920.9 ned				∑	6/24/	<u>′04</u>	
921.5	10.7		grained, light gray, mica hard, occassional shale stringers, crosbedded. Gray shole zone from to 920.1. 45° Fracture, iran stai from 920.9 to 920.9 Maderate weathering fr 920.9 to 918.8. Braken zone with sever	920.9 ned 0.7. om	L O.O			፟፟፟፟፟፟፟	<u>6/24/</u>	<u>′04</u>	
921.5	10.7 -	SS	grained, light gray, mica hard, occassional shale stringers, crosbedded. Gray shole zone from ta 920.1. 45° Fracture, iran stai from 920.9 to 920 Maderate weathering fr 920.9 to 918.8.	920.9 ned 0.7. om	L 0.0 REC 100%			፟፟፟፟፟፟፟፟	<u>6/24/</u>	<u>′04</u>	
921.5	10.7 -	SS	grained, light gray, mica hard, occassional shale stringers, crosbedded. Gray shole zone from ta 920.1. 45° Fracture, iran stai from 920.9 to 920 Maderate weathering fr 920.9 to 918.8. Braken zone with sever weathering and safi 920.4 to 920.1. Iron staining from 910.	920.9 ned 0.7. om re t fram 9 ta	L 0.0 REC 100%	3		⊽	<u>6/24/</u>	′ 04	
921.5	10.7	SS	grained, light gray, mica hard, occassional shale stringers, crosbedded. Gray shole zone from to 920.1. 45° Fracture, iron stai from 920.9 to 920 Maderate weathering fr 920.9 to 918.8. Braken zone with sever weathering and saft 920.4 to 920.1. Iron staining from 910. 898.4. 55° Iron stained fracti	920.9 ned 0.7. om re t fram 9 ta	L 0.0 REC 100%			∇.	6/24/	<u>′04</u>	
921.5	10.7	SS	grained, light gray, micanard, occassional shale stringers, crosbedded. Gray shole zone from to 920.1. 45° Fracture, iran stain from 920.9 to 920. Maderate weathering from 920.9 to 918.8. Braken zone with sever weathering and saft 920.4 to 920.1. Iron staining from 910. 898.4. 55° Iron stained fract from 910.4 ta 910. Horizontal, iron stoined fracture at 902.1, 9. Near vertical fracture, iron stoined fracture.	920.9 ned 0.7. om re fram 9 to	L 0.0 REC 100% RQD 100%	3		፟	<u>6/24/</u>	′ <u>04</u>	
921.5	10.7 -	SS	grained, light gray, micanard, occassional shale stringers, crosbedded. Gray shole zone from to 920.1. 45° Fracture, iran stain from 920.9 to 920. Maderate weathering from 920.9 to 918.8. Braken zone with sever weathering and saft 920.4 to 920.1. Iron staining from 910. 898.4. 55° Iron stained fracture from 910.4 ta 910 Horizontal, iron stoined fracture at 902.1, 9 Near vertical fracture, iron stoined from 910.6. Vertical fracture from	920.9 ned 0.7. om et fram 9 ta	L 0.0 REC 100% ROD 100%	3		፟	6/24/	<u>′04</u>	
921.5	10.7	SS	grained, light gray, micanard, occassional shale stringers, crosbedded. Gray shole zone from to 920.1. 45° Fracture, iran stain from 920.9 to 920. Maderate weathering from 920.9 to 918.8. Braken zone with sever weathering and saft 920.4 to 920.1. Iron staining from 910. 898.4. 55° Iron stained fracture from 910.4 ta 910.4 ta 910.4 ta 910. Horizontal, iron stoined fracture at 902.1, 9 Near vertical fracture, iron stoined from 501.6. Vertical fracture from to 884.3.	920.9 ned 0.7. om fe t fram 9 ta ure, 0. 02.0 902.0	L 0.0 REC 100% RQD 100%	3		∇ .	6/24/	′ <u>04</u>	
921.5	10.7	SS	grained, light gray, micanard, occassional shale stringers, crosbedded. Gray shole zone from to 920.1. 45° Fracture, iran stain from 920.9 to 920. Maderate weathering from 920.9 to 918.8. Braken zone with sever weathering and saft 920.4 to 920.1. Iron staining from 910. 898.4. 55° Iron stained fracture from 910.4 ta 910 Horizontal, iron stoined fracture at 902.1, 9 Near vertical fracture, iron stoined from 910.6. Vertical fracture from	920.9 ned 0.7. om fe t fram 9 ta ure, 0. 02.0 902.0	L 0.0 REC 100% RQD 100%	3		፟	6/24/	′ <u>04</u>	

PROJECT D	over Do	ım		INSTALLATION	HUNTING	TON DI	STRICT	SHEET 2
		···:						OF 4 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF M (Description)	ATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARI (Drilling Ilme, water weathering, etc., if	(5 loss, depth of significant)
0	-	٠	d				9	
	=		•		ROD 92%			
						5		
	_							
				•				
	=							
	_							
					L 0.0			
					REC 100%	6		
	-				100%			
	=							
	=				ROD			
	_				RQD 100%			
	_							
	=					,7		
	=							
					L 0.0			
	=				REC 100%			
					100%			
		ſ				8		
					ROD	"		
					RQD 90%			
	=	ss						
	_=							
	==							
	=							
	=				L 0.0]		
	1				REC 100%	9		
	—				100%			
	=				BOD			
	_				RQD 100%			
	=							
	-					10		
	=							
	=							
					L 0.0			
					REC 100%			
	=				100%			
	• =							
	-					<u>,,</u>		
					_	11		
					RQD 100%			
	=							
					L 0.0	12		
					REC 100%			
RH FORI	44 -	^			PROJECT Dov			
.KE FURI	wi.io.30 ~				IDDA IFAT			LE NO.

PROJECT D	over Do	m_	INSTALLATION H	UNTING	TON D	SHEET 5 OF 4 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Obscription)	X CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling line, water loss, depth of weathering, etc., f
		-		ROD 80%		
				80%	12	
	=					
					13	
				L 0.0		
	=	SS		REC 100%		
				ļ		
				ROD	14	
				ROD 91%		
					-	
	_=					
				L 0.0		
878.0	54.2			REC 100%	15	
			SHALE: Oork gray, soft, occassional slickensides,	1		
			carbonaceous, occassianol siderite nadules.	ļ		
]			RQD		
			Cloy seam, plastic, damp, dork gray and slight sulfer smell from 878.0 to 877.9.	18%		
	╛		Broken every 0.1'-0.05' from 878.0 tć 874.0.			,
			Calcite stringers from 874.6 to 874.5.		16	
		SH	Siderite nodules from 873.3 to 873.0.	L 0.0		
				REC 100%		
	▎∃		Colcoreous from 872.8 to 870.0.			
	=					
				ROD		
	=			ROD 70%	17	
870.0	62.2					
			LIMESTONE: Dark gray, hard, crystalline grained, fossiliferous			
		LS	-	L 0.0		
967.0				REC 100%		
867.9	64.3 -		COAL: Block, soft, blocky, vitreous.	1	18	
	\exists	С	Bone cool, black, hard from 866.8 to 865.5.	RQD 54%		
007 -						
865.5	66.7		SHALE: Con situate and			
		SH	SHALE: Groy, silty to sandy, mod. hord, occassional sandstone stringers.		19	
	68 -		J	L 0.0		

PROJECT			INSTALLATION			SHEET 4
D.	over Do	m ·		HUNTING	TON D	ISTRICT OF 4 SHEETS
ELEVATION	ОЕРТН	LEGENO	CLASSIFICATION OF MATERIALS	% CORE	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
۰		٠	(Description)	ERY	NO.	weathering, etc If significant)
	_		SHALE Cont.			
			Occassional siderite nodules	REC 100%	19	
	=		Occossional siderite nodules from 862.0 to 861.0.	100%	\vdash	
	\exists					
				000		
		SH		RQD 100%	20	
	=					
				ſ		
	╡					
858.9	73.3 _			L 0.0	21	
	=		BOTTOM OF HOLE @ 858.9			
	\exists					
	=					
	_					
	=					
	=					
] [
	╡					
	=			-		
	-					
	ᅼ					
1 1	3					
	4					
	\exists					
	ᅥ					
	=					
	=					
	_ =					
	3					
	=					
	-					
	=					
	92					
		_	1:49 AM		ver Dar	HOLE NO.

DRILLI	NG LO		ision reat Lakes and Ohio River	INSTALLATIO		H-EC-				EET 1	
1. PROJECT	_			10. SIZE AN				RE AN			W
2. LOCATION		s or Station	1)	11. DATUM		VATION 5	ножи	ŒΒ	M or M	SL)	
N 32676			1884.66	12. MANUFA	D 29 CTURER!	S DESIGNA	ATION OF	DRILL			-
3. DRILLING	AGENCY	HC NL	JT TING							Æ 45	
4. HOLE NO.	(As shown a	an drawing	tille C-04-2	13. TOTAL BURDEN	SAMPLE	OVER- S TAKEN	DIST	URBED	4 :	IDISTURB	0
5. NAME OF				14. TOTAL							
6. DIRECTION	OF HOLE	BRAG	;G	15. ELEVAT			R 92	2.2	COMPL	FTCO	
	CAL IN		DEG. FROM VERT,	16. DATE H		:_	<u>6/28</u>		_:	6/29/	04
7. THICKNES	S OF OVE	RBUROEN	4.9 Feet	17. ELEVAT					•t		100×
8. DEPTH OF			68.7 Feet	19. NAME C	_	GTOR					100 %
9. TOTAL OF	PTH OF H	HOLE	73.6 Feet			S1	EWAR	T			
ELEVATION	DEPTH 6	LEGEND	CLASSIFICATION OF MATERIAL (Dascription)	s	MC	u	PL	4	% SAND	½ ∙200	BLOWS
933.0	0.8	SC- SM	SILTY CLAYEY SAND (SC- low pl., mst., f. sand w/tr. and onimal discard odor	SM), gr., org.							1
300.0	<u>-0.0</u>		CLAYEY GRAVEL WITH SAI	ND (GC)							2
	3		gr., m. pl., mst., subong. to gravel, f. sand	rou.							3
					7.3	32	21				5
	=										3
	_ =	GC									4
	\exists		low pt. @ El. 930.8 - El. 92	9.7	0.0						3
000.7	41 =				8.8						3
929,7	4.1	6:	LEAN CLAY (CL), gr., low w/wd. silty SH	ol., dry	RECOV-	BOX OR SAMPLE	(Dr	Ri liling Ilms	EMARKS water loss elg_it sign	depth of	25
928.9	4.9	CL	w/wd. silty SH		ERY	NΩ.		eathering.	elc_if sign	il logni)	50/0.4
	_		SHALE: Groy, saft, laminat	ed.	REC						•
	\exists	SH	Vertical fracture from		100%						
007.4			to 927.4.		DAA.						
927.4	6.4 -		SANOSTONE: Cray mod b	ord —	RQD 17%	1					
926,6	7.2	SS	SANOSTONE: Gray, mod. h med. groined, micaceous	or u, i.							
	=		60° Fracture from 92	7.4	L 0.0						
			SHALE: Gray, soft to mod	bord							
	7		lominated, silty to sand	. noro, ý.	REC 100%	<u> </u>					
			45° Fracture at 925.1.								
			Vertical fracture from	922.2							
		SH	to 922.0.	0217							
	\exists	2	Vertical fracture from to 921.1.	921./	ROD	2	,				
					RQD 61%						
	\exists							₹	6/29/	04	
						<u> </u>					
921.1	12.7										
			SANDSTONE: Light gray, h med. grained, crassbedd	ord, led	L 0.0						
	_		thick beds, micaceous is stained.	ron	REC 100%] 3					
			Vertical fracture from	904 ³	100%						
			to 902.7.	30 + .3							
	_		70° Fracture from 89	90.2 to							
			888.9.								
					ROD 100%						
					100%						
	_	SS									
	-					,					
						4					
	_				L 0.0						
					REC 100%						
						L					
	=					5					
	_										
LRH FOR	4 18 76				PROJEC				HOLE		

DRILLING	LOG	(Cont S	heet) ELEVATION	_	933.81		Hole No. (
PROJECT D	over Do	ım		INSTALL	HUNTIN	GTON D	ISTRICT	SHEET Z	
ELEVATION	DEPTH b	LEGEND	CLASSIFICA (8	ATION OF MATERIAL! Description	% COR RECOV ERY	BOX OR SAMPLE NO.	REMAR (Drilling Ilms, water weathering, etc., ii	KS loss, depth of significant)	
	=		_		ROD 1007	,	<u> </u>		1
	<u>=</u>				1007				ŀ
] =					5			ŀ
	_								Ė
	=								ŀ
									Ė
	=				L 0.	<u> </u>			-
		1			REC 100%	,			Ė
1	=	1			1007	6			ŀ
	=								E
	_								F
	=	1			RQD 1002	,			Ē
	=]			1007				
	_=	1							E
	=	1							-
	=					7			Ē
	=	1			L Ò.	<u>o</u>			Ė
•	_	1			REC 1002	.			
}	=	-			1007	·			Ė
									-
	=								Ė
					RQ0 68%				þ
	=	33			68%	8			ŀ
	-	1							ŀ
	=	1							
		-							Ė
	=				L 0.	익 (ŀ
	-	-	}		REC 100	<u>, </u>			ŀ
	=								-
					•	9			Ē
	=	1							ł
	-	}			RQE 987				ŀ
1	=	3			987				ŀ
	-	-							-
		1							ŀ
	=					10			F
	-	-			L O.	의 [Ė
	_	1			REC 100:	4			ŀ
	=	-							Ė
	=	=							ŀ
		}			500				ŀ
		1			ROD 1007	:			-
]							ŀ
						11			-
									-
	-	†							Ē
	44	}			L 0.	0			ŀ
LRH FOR	RM 1836	-A			PROJEC	T over Da		OLE NO.	_[
MAY 04			9:21 AM		' D	over Da	m l	C-04-	2_

PROJECT D	over Do	ım	INSTALLATION	LINTING	TON DI	STRICT SHEET 3
	over bo	,,,,,				10. 1 0.02.10
ELEVATION 0	DEPTH 6	LEGEND c	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling line, water loss, depth of weathering, etc., if significant) 9
	_			REC 100%		
	-					,
					12	
				ROD 74%		
	_					
	_					
	-					
	_					
	=			L 0.0		
		SS		REC 100%	13	
			•			
				RQD 100%		
					14	
				L 0.0		
				REC 100%		
070 -						
878.9	54.9_		CHAIC: DI			
			SHALE: Dark gray, mod. hord, laminated, scattered siderite nodules, numerous slickensided fractures, efferevescent in last		15	
	_		fractures, efferevescent in last	RQD 26%		
	` =		0.2 .	26%		
			45° Frocture at 875.7.			
	=					
				L 0.0		
		SH		REC 100%	16	
	=			100%	.	
	=					
			•	RQD		
	=			RQD 24%		
8716	-					
871.6	62. 2		LINESTONE: Crow ware band for	1	17	
-			LIMESTONE: Gray, very hard, fine to med. crystalline grained, fassiliferous.			
			russiiirei ous.	L 0.0		
	_					
		LS		REC 100%		
	=					
0677					.	
867.7	66.1.		COAL Block 11 11 11	ROD 60%	18	
	=		COAL: Black, mod. hord, vitreaus luster.	00%		
	_	С				
865.9	67. 9					
		SH		4 1	ver Dan	,

PROJECT	over Do		INSTALLATION	II INITINIC	TON 0	SHEET 4
		,,,		T		DISTRICT OF 4 SHEETS
ELEVATION	DEPTH	LEGENO	CLASSIFICATION OF MATERIALS (Description)	RECOV- ERY	BOX OR SAMPLE NO.	weathering, etc., if significant)
9	b	ee	SHALE Cont.	L 0.0	-	9
				REC 100%	.	
			Dark gray to black, mad. hard, carbonaceaus, laminated, silty.	100%		
	=		Silty from 865.9 to 865.3.		19	
			Caalstringers from 865.0 ta 864.0.			
		SH		ROD		
	_			RQD 97%		
					20	
860.1	73.7			L 0.0		
] =		BOTTOM OF HOLE @ 860.1			
	=					
	_					
	=					
	=					
	-					
	=			1		
	=					tu
	=					
	_					
	_=					
	=					
	_			ĺ		
	=					
] =					
	=					
	Ξ					
	=					
	=					
	=					
	=					
	-					
	=					
	=					
	92					
LRH FOR	м 1836-	A		PROJECT Do		m HOLE NO.

DRILLI	NG LO		ision eat Lokes and Ohio River	INST ALL ATI	ON CELR	H-EC-	G			EET 1	HEETS
i. PROJECT Dover Do				10. SIZE A						HOLLO	W
2. LOCATION N 32664			n 1866.04		/D 29						
3. DRILLING		HC NL								ME 45	
4. HOLE NO.	imber)	on drawing	inte : C-04-3	13. TOTAL BURDEN 14. TOTAL	SAMPLE	S TAKEN	<u>:</u>		8 :	iDISTURB	0
5. NAME OF		BRAG	G	15. ELEVAT	_						
6. DIRECTION X VERTI			DEC. FROM VERT.	16. DATE H		:	RTED 5/17/			ETED . 5/19/	04
			17.5 Feet	17. ELEVAT					eet		100.4
8. DEPTH DE		_	74.5 Feet	19. NAME (CTOR					100×
ELEVATION	ОЕРТН	LEGEND	92.0 Feet CLASSIFICATION OF MATERIAL (Description)	.s	мс	ı.	TEWAR PL	Х •4	, , SAND	χ -200	BLOWS
933.2	0.5 =	SW	WELL GRADED SAND WITH (SW), br. and bk., dry, ang.	GRAVEL to rou.							29
			gravel, c. to f. sand w/asp SILTY SAND WITH GRAVEL	halt /							11
	=		br., non pl., mst., ang. to regravel, c. to f. sond								5
	-	SM			6.4						9
	-										3
930.7	3.0 -		WELL OF 1875 2								8
	Ξ		WELL GRADED SAND WITH AND GRAVEL (SW-SM), br.,	non pl.,							12
			mst., ang. to rou. gravel, c sond	. το τ.							9
	-	SW- SM			5.0			40	48	12	9
		SIVI									5
	-										6
927.7	6.0 -		SILTY SAND WITH GRAVEL	(SM)							5
	-		br., non pl., mst., ang. to Figravel, c. to f. sand	ou.							6
			-								13
	-				5.9						6
											6
	=										9
	_	SM			<u> </u>						15
	Ξ										10
	_										10
	Ξ				5.6						8
											8
921.7	12.0										6
			GRAVELLY LEAN CLAY WI SAND (CL), gr. and br., m. subang. gravel, f. sand w/S SH frags.	TH pl., mst.,							5
			SH frags.	.5 0110							3
	=				15.8	34	20	20	19	61	4
					.5.5	-	20	23	'3	0,	2
	Ξ	CL									3
918.7	15.0 ~		SANDY LEAN CLAY (CI) (r, br							3
	_		SANDY LEAN CLAY (CL), (low pl., mst., f. sond w/tr. SS frags.	SH and							5
					13.8						4
917.2	16,5 _		SILTY SAND (SM), It. br., n	on pl.,	Z CORE	BOX OB			FMASWS		3
040.0		SM	dry, f. sand w/wd. SS		RECOV- ERY	SAMPLE NO.	(Ori	RE Jiling time, Bothering, e	EMARKS woter loss, etc., it sign	depth of (floant)	23
916.2	<u> 17.5 –</u>		CANDOTONE, Liebt bare		REC	7			9		50
	. –		SANDSTONE: Light brown/ hard, med. grained, mica crossbedded, numerous	gray, ceous,	100%						
	Ξ	ss	fractures with number of fractures decreasing wi	J1	RQD OX	1					
		33	depth.	u.	REC 1000						-
	=		Vertical fracture from 906.5.	906.8	100% ROD						ļ
RH FORI	vi 1836				O% PROJECT				HOLE		
MAY 04	4/0/000	6 10:14:	47.614			ver Dor	m				04-3

PROJECT D	over Do	m	INSTALLATION	(UNTINO	TON D	ISTRICT OF A SUFETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	z CORE	BOX OR SAMPLE	REMARKS
6	b	c	(Description)	ERY	NO.	(Drilling time water loss, depth of weathering, etc., if significant)
	_		SANDSTONE Cont.	ROD 0%	1	
			Several 45° fractures from 906.5 to 905.8.	07.		
	-					
			30° Frocture at 905.2 and 898.2.			
	=		60° Fracture from 904.2 to 903.8.		2	
	-		35° Frocture at 901.4 and 901.2.			
	_			L 0.0		
]	Open vertical fracture from 879.9 to 877.5.	REC 100%		
	=					
] =					
		1		RQD 0%	3	
	_					
	=					
	=			L 0.0		
	-	1		REC 100%		
	=				4	
	-	1				
	-					
		1		RQD 47%	<u> </u>	
	=	SS				
	=				5	
	=			L 0.0		
				REC 100%		
	-					
		1				
	_	-				
	=	1		RQD 88%	6	
		1				
	-	=				
		1			$\vdash \vdash$	
				L 0.0		
	_			REC 100%		
	=	1			7	
	_	-1				
	=	1				
		1		ROD 90%		
	=	1				
						▽ 5/19/04
	_				8	
	=	-		L 0.0		
LOW FOR	44 -	<u> </u>			1	
LRH FOR MAY 04 001.dgn 1	м 1836.	A		PROJECT Do	-	M C-04-

DRILLING PROJECT			INSTALLATION			Hole No. C-04-3	_
D	over Do	<u>m</u>	Н	UNTING	TON E	DISTRICT OF 4 SHEE	: 15
ELEVATION 0	DEPTH 6	LEGEND	CLASSIFICATION OF NATERIALS (Discription) d	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., f significant)	
				REC 100%			
	=						
	=						
					9		
	_			RQD 90%			
	_ =						
	=						
	=						
				L 0.0			
				REC 100%			
		SS		100%	10		
				1			
				POD			
]			RQD 92%			
]						
					11		
	=			L 0.0			
	-		•	REC 100%			
	=			100%		·	
	ᅵᅼ		•				
	=						
8 <u>77.5</u>	56.2			ROD	.,		
			SHALE: Dark gray to black, mod. hard, numberous siderite nodules throughout, laminated.	ROD 0%	12		
			nodules throughout, laminated.				
		SH					
	=						
				L 0.0			
	1 =			REC 100%			
]						
	=				13		
872. <u>7</u>	61.0						
			LIMESTONE: Gray, hard, fine to med. crystalline grained, thick bedded, fassiliferous.	RQD 28%			
	=						
	=		Open vertical fracture from 872.7 to 870.4.				
		LS	Vertical fracture fram 870.4 to 868.7.				
				L 0.0	14		
	-		ŧ		14		
869.0	64.7			REC 100%			
			COAL: Black, pyritic, vitreous.				
]	С					
867.4	66.3 -						
- 4 - 1 - 1			SHALE: Groy, silty, mod. hord,	ROD 50%	15		
		6 Ĥ	SHALE: Groy, silty, mod. hord, laminoted 1/3 thick with some being carbonaceous, sandy in zones.	50%			
	<u> 68 −</u> M 1836-		45° Fracture at 858.3.	PROJECT		HOLE NO.	

PROJECT	over Do	ım	INSTALLATION H	UNTING	TON E	DISTRICT OF 4 SHEET
ELEVATION a	DEPTH 6	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
	-		SHALE Cont.	<u> </u>	15	4
			30° Fracture of 856.5 and	L 0.0		
	=		856.3. 70° Fracture of 855.2.	REC 100%		
] =					
			Several cool stringers and one coal lamination 1/3' thick from 863.3 to 863.0.			
			Zone of fractures from 856.6 to 853.3.	ľ	16	
	1		856.6 to 853.3.	RQD 88%		
	-					
	-			L 0.0		
	111111111111111111111111111111111111111			REC 100%	17	
		SH		100%	,,	
				ROD 30%		
					18	
	1			L 0.0		
				REC 100%		
				100%		
	~					
<u>852.2</u>	81.5			ROD 66%	19	
	-		LIMESTONE: Gray, hard, fine ta med. crystalline grained, thick bedded, fossiliferous.			
			bedded, fossiliferous.			
		۲S		L 0.0		
	=			REC 100%		
	=				20	
848.3	85.4	_		RQD 85%		
	=		SHALE: Dark groy to black, mod. hard, silty, fossiliferous in upper part, laminated,			
	=		upper part, laminated, carbonaceous.	L 0.0		
			40° Fracture with slickensided surface at 845.5 and 845.2.	REC 100%		
		SH	845.2.			
					21	
	=				21	
9444	, <u> </u>			RQD		
844.1	09.6	-	SANDSTONE: Gray, mod. hard,	ROD 88%		
	-		very fine grained, shaley.]		
		SS			22	
841.7 RH FOR	92 -	Δ	BOTTOM OF HOLE @ 841.7	L 0.0		
MAY D4		. ,		TOBLOSE On	ver Da	m НОLE NO. C-04

	NG LO	G Gr	sion eat Lakes and Ohio River	INSTALLAT	CELR	H-EC-			OF	EET 1	HEETS
1. PROJECT Dover Do	ım			10. SIZE A							W
2. LOCATION	(Coordinate	s or Station	J	11. DATUM NG	FOR ELE VD 29	EVATION	SHOWN	(IE	BM or M	1\$ <i>D</i>	
N 32671		23019		12, MANUF		5 DESIGN	ATION O	F DRILL		4E 45	-
		HC NU		IJ. TOTAL	NO. OF C	OVER-	:DIST	URBEO		ME 45	
4. HOLE NO.	. (As shown umber)	on drawing	fille : : C-04-4	BURDE	SAMPLE	STAKEN	:		12 :	*DIS ORE	0
5. NAME OF	DRILLER	5516		14. TOTAL							
6. DIRECTION	N OF HOLE	BRAG	<u> </u>	15. ELEVA			ER 89	9.9_	COMPI	ETED	
	ICAL 🔲 IN		DEC. FROM VERT.	16. DATE I		<u>:</u>	5/10		:	5/11/0	04
7. THICKNES	S OF OVE	RBURDEN	28.4 Feet	17. ELEVA 18. TOTAL			_		<u>et</u>	_	00.5
8. DEPTH DI	RILLED INT	O ROCK	72.7 Feet	19. NAME			FOR BU	KING			98.5
9. TOTAL DE	EPTH OF I	1DLE	101.1 Feet				TEWAR	?T	1		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description)	.\$	MÇ	LL	PL	х • 4	и SANO	у -200	BLOWS
	=	-	POORLY GRADED GRAVEL SAND (GP), br., dry, suband	WITH -							100
	_		jang, gravel, c. to il sana w	/asphalt							28
	=	CD	frogs. mst., ang. to rou. grovel								47
		GP	w/alluvium, flint, and SS frags. © El. 933.2-		5.9						15
			Ei. 930.7								
	=										21
930.8	3.0 -	<u>.</u>	POORLY GRADED SAND W	TH SHT					 		18
	_		LAND GRAVEL (SP-SM).br	nan pl							6
	~		mst., ang. to rcu. gravel, c send w/alluvium, flint and S frags.	SS .							18
	=		393.		4.4			40	50	10	21
											8
	=										14
											12
	=										9
	=										18
											14
	=				4.8			ĺ			, 6
	_										
	=										11
								1			9
	=										7
											7
	. =	65			5.4			ļ			15
		SP- SM			0.4						12
											9
											9
											8
											11
	=										9
	=			,	4.9						4
											15
								<u> </u>			9
	=										5
								}			5
	=									_	7
	=				4.8			43	49	8	4
								[4
915.8	18.0										5
- 1510			POORLY GRADE() SAND WI GRAVEL (SP), br.,mst., ang rou. gravel, c. to f. sand w alluvium, flint and SS frags	TH				<u> </u>			5
			rou. gravel, c. to f. sand w	/							5
		SP	Guarian, fint and 33 frags		4.5						4
	=										<u> </u>
9 <u>13.8</u> RH FORI				_	000 500						3
	M 1070				PROJECT	t ver Dai	m		HOLE	NO.	-04-4

PROJECT D	over Do			INSTALLATION	UNTING	TON 5	NC TOLO		SH		2
	Over Do	,,,,			UNTING	. ION L	JIS TRIC		OF		HEETS
ELEVATION	DEPTH	LEGENO	CLASSIFICATION OF (Description)	MATERIALS	MC	LL	PL	•4	SAND	-200	BLOY
•	_	·	POORLY GRADED SA	AND WITH							3
912.8	21.0	SP	GRAVEL (SP), br., m rou. gravel, c. to 1. s alluvium, flint and SS	st., ong. to sand w/	4.5						2
			POORLY GRADED GR SAND (GP), br. and	RAVEL WITH							3
	=		to mst., ong. to rou f, sand w/alluvium (wni., ve. mst. . grovel, c. to							4
	_		11. Sund W/ Gild Vidini (ina 55 irags.							5
					6.1						4
											3
											3
	=	GP	br. @ El. 909.7-El. 90	06.7							3
	=										4
	=										3
					7.3				}		6
	=		POORLY GRADED GE	RAVEL WITH							4
906.8	27.0~		SAND AND SILTY CI	g.torou. {	9.1						4
	=	GP-	gravel, c. to f. sand conglomerate frags.	and alluvium	6.5						7
905.8	28.0	ĞĊ	SILTY SAND WITH C gr., nan pl., dry, ang gravel, c. to f. sand	GRAVEL (SM),\ .to_rau,	RECOV-	BOX OR SAMPLE	(pr	liling time,	EMARKS Woler foss	depth of	11
905.4	28.4 -	SM	and alluvium	w/55 frogs. '	ERY	NO.	*	eathering, (etc., If sign	alficont)	52/0
] _=		SANDSTONE: Light g brown med to co	ray and light	REC 100%						
	=		hord, micaceous, somewhat frable,	weathered,	RQD 0%						
			throughout.	•	L 0.0						
	=		Numerous fractur 905.4 to 901	es from . .5.	REC 47%	1					
			50° Fracture at from 885.0	900.6 and	ROD 0%						
			Shaley and fracti	ured from	L 1,1						
	-		896.8 to 896 Vertical open frac		REC						
			çarbanoceous fram 892.5	lamination to 890.6.	100%						
	=		Vertical surface of 889.5 to 888	rack from 3.9.	ROD	2			E (11 (0		
			45° Fracture fra 885.7.	om 886.1 ta	0%	_		∇ ;	5/11/0	<u>4</u>	
	=		Verticol fracture								
			ta 883.5 and	905.1 to						`	
	_		Numeraus soft sh	iale lenses	L 0.0						
		SS	and clayey st 882.8 to 882	ringers from 2.2.	REC 100%						
	=										
						3					
					ROD 56%						
	-=				567						
	=										
					L 0.0						
	=										
					REC 100%	4					
	<u> </u>				ROD 62%						
	=				62%	ا ا					
	44					5					
RH FORI	44 M 1836-	Α			ROJECT				HOLE	NO.	
MAY 04			3:10 AM			er Da	m,		1	C-	-04-

PROJECT	over Da		INSTALLATION			SHEET 3
	yer Da	<u> </u>				DISTRICT OF 5 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	Z CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Orilling time, water lass, depth of weathering, etc., if significant)
]	\exists		,			
	=				5	
			•	L 0.0		
	-=			REC 100%		
	\exists					
	-]		
J	=			ROD 36%	6	
	\exists			36%		
}		SS] [
	\exists					
	\exists			L 0.0		
				REC 100%	7	
	=				[
	\exists					
880.8	53.0			R00 38%		
	=		SHALE: Dark gray, mod. hard, laminated, weathered, few	38%		
	\exists		slickensided fractures, few siderite nodules throughout.			
. [∃		20° Slickensided fracture of			
,	긕		879.9.	L 0.D	8	
	\equiv		Vertical fracture from 879.0 to 878.6 and 876.6 to 876.1.	REC 100%		
	_	SH	Slightly effervescent from 876.8 to 874.7.	100%		
ĺ	\exists	5.1	8/0.8 to 8/4./.			
]	Ē					
	=			ROD 0%	9	
	=					
874.7	59.1					
1	=		LIMESTONE: Gray, hard, fossiliferous.			
	\exists	LS	Verticol heoled frocture from 874.7 to 873.3.	L 0.0		
	=		o to ora.a.	REC 100%	10	
872.3	61.5			100%		
	\exists	_	COAL: Black, vitreous, pyritic.			
871.0	62.8	С				
2,1.0	-		SHALE: Light gray, mod. hord, carbonaceous zones, thin	ROD 20%		
	\exists		bedded. 50° Fracture at 870.3.			
	=		45° Frocture 868.8.		11	
	寸		Dark gray, silty to sandy from 866.7 to 848.6.			
	=	SH				
			Vertical fracture from 868.3 to 868.0 ond 864.8 to 863.9.	REC 100%		
	Ξ		6D° Fracture from 861.0 to 860.5.			
					12	
	68		Effervescent from 864.4 to 848.7.	RQD 76%		

PROJECT	LOG		INSTALLATION			Hole No. C-04-4
	over Do	m	H	Τ		DISTRICT OF 5 SHEETS
ELEVATION	H1430	LEGEND c	CLASSIFICATION OF MATERIALS (Description)	Z CORE RECOV- ERY	SAMPLE NO.	REMARKS (Drilling lime, water loss, depth of weathering, etc., if significant)
			SHALE Cont.		-	
	\ _=		80° Fracture from 858.8 to 853.8.		12	
	=					•
	=			L 0.0		
				REC 100%	13	
]					
	=			ROD 72%	\square	
	=			/2%	[
	-					
	=				14	
	=			L 0.0		
				REC 100%		
		SH		100%		
		۱ اد				
	ᅵᆿ			RQD 78%	15	
]					
				L 0.0		
				REC 100%		
	=				16	
	=					
				RQD 88%		
848.6	85.2			L 0.0	17	
			LIMESTONE: Dark gray, hard, thick bedded, fossiliferous.	REC 100%		
	1		Vertical fracture zone from 845.0 to 843.9.			
] =		5,5.0 10 545,5.			
				ROD 72%		
		ĻS		/2%		
					18	
				,		
0.1-	Ξ			L 0.0		
843.6	90.2		SHALE: Dark grow to black and			
	Ξ	SH	SHALE: Dark gray to black, mod. hord, carbanaceous and calcoreous and fossiliferous near top, lominated.	REC 100%		
	=	311			19	
	92 -		45° Fracture 838.3.			

PROJECT	over Do		INSTALLATION		TO:-	SHEET 5
	over Do	ım		IUNTING	TON DI	ISTRICT OF 5 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	RECOV-	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
0	ь	c	d	ERY	NO.	weathering, etc., if significant)
	_		SHALE Cont.	ROD		
	_		Near vertical fracture from	31%	10	
			Near vertical fracture from 842.5 to 841.3.	1	19	
	_					
		SH				
	} =					
	[=			L 0.0		
					1 [
838.1	95.7 -			REC 100%	20	
			SILTSTONE: Gray, mod. hard, thin bedded, shaley.		20	
	<u> </u>		Sandy zone from 834.6 to 833.6.	ROD 87%		
			000.0.	87%		
	=					
	=					
		SLS				
					21	
	=		•	L '0.0		
	_			REC 100%		
				RQD 100%		
0.7.5.					22	
832.7	101.1			L 0.0		
	[=		BOTTOM OF HOLE @ 832.7.			
	=			[
	_					
	_					
	=					
	-	ļ				
	_					
	=					
	_					
	_					
	=					
	=					
	=					
	=					
	_					
	_					
	=					
	_					
	_					
DU 505	116 -					
LRH FOR	м 1836-	A		PROJECT Dov		HOLE NO.

DRILLI	NG LO		sion eat Lakes and Ohio River	INSTALLATIO		H-EC-	G			EET 1	EET.
1. PROJECT				10. SIZE AN	ND TYPE	OF BIT	3" HOI	LOW	OF	2 st	ILE IS
2. LOCATION		s or Station)	11. DATUM	FOR ELE	VATION	SHOWN	(TB	M or M	SL)	
N 32654	0.28	E_2301	875.50	12. MANUFA	_	DESIGN	ATION OF	DRILL	CA	 ME 45	$\neg \neg$
3. DRILLING		HC NU	-	13. TOTAL			:DISTU		:UN	DISTURB	ED
4. HOLE NO.	imber)	un drawing	: C - 04 - 5	BURDEN 14. TOTAL	NUMBER		XES O		15 :		0
5. NAME OF		BRAG	G	15. ELEVAT		ITAW GNU	ER 87	8.0			
6. DIRECTION X VERTI			DEG. FROM VERT.	16. DATE H		:	RTED 4/28			ETED 4/28/	04
			35.5 Feet	17. ELEVAT			_		et		N/A ^X
8. DEPTH DE				19. NAME (TOR	TEWAR				(4/ M.
ELEVATION	DEPTH	LEGEND	35.5 Feet CLASSIFICATION OF MATERIAL (Description)	LS	MC	LL	PL PL		½ SAND	-200	BLOWS
901.3	0.3 _	ĞM	SILTY GRAVEL WITH SAND	(GM).	30.9			-4	SANU	-200	2 -
	=		bk., non pl., ms:, w/orgs. a animal discard odor	nd							3
			POORLY GRADED GRAVEL SAND AND SILT (GP-GM), I pl., mst., subang. to rou. gr	WITH or., non							5
	=		lpl., mst., subang. to rou. gr to f. sand w/S5 frags. and alluvium	d d	9.8						4
											5
		GP-									4
		ĞМ	ang. to rou. gravel@ El. 89 El. 895.6	8.6-							1
,	=]									7
	_				5.3			49	42	9	9
	_										4
805 6											15
895.6	6.0 -		POORLY GRADED GRAVEL	WITH	-				 		8
	=		SAND (GP), br., mst., ang. gravel, c. to f. sand w/SS alluvium	to rou. and							14
	_	GP	35 (1011)		7.3						16
		31.									6
											14
892.6	9.0 -		CILTY CAND WITH ODAYS	/C\1:							13
	=		SILTY SAND WITH GRAVEL br., non pl., ve. mst., subar rou. grovel, c. tc f. sand w	na to							6
	-		frags. and alluvium	. 00							8
	=	SM			12.2			31	50	19	5
											5
889.6	12.0 -		s								7
	=		SILTY CLAYEY GRAVEL W SAND (GC-GM), br., low pl.	. ve.							2
		1	mst., subang, to rou, grave f. sand w/SS frags, and a	el, c. to Iluvium							1
	-	GC- GM			9.4						2
	=	GM			3.4						5
											6
886.6	15.0 -		SILTY SAND WITH GRAVEL		_						5
,	=	1	I(SM), br., low to non pl., v	e.							12
	=		mst., subang. to rou. grave to f. sand w/SS frags, all and flint	uvium,	11.1				-		6
] =	-	and to say and a 51 Co	24.0							2
	-	61.	ong, to rou, gravel@ El. 88 El. 881.9	54.B-							4
	-	SM									8
] =	4			13.1			18	53	29	4
	=	1	GRAVELLY LEAN CLAY W		ĺ						2
881.9	19.7		SAND (CL), gr., m. pl., ve. i subang. to rou. cravel, f. s	and w/ l							3
881.6	20.0 -	CL	tr. wood frags, and natura odor	gus	20.5			29	20	51	1_
LRH FOR					PROJEC Do	t ver Da	m		HOLE		-04-5

PROJECT D	over Do	ım	INSTALLATION	HUNTING	TON [OISTRIC				2 SHEETS
ELEVATION	ОЕРТН	LEGEND	CLASSIFICAT ON OF MATERIALS (Description)	мс	LL	PL		% SAND	/ -200	BLOW
0	6	c	CRAVELLY LEAN CLAY WITH		_					
	-		SAND (CL), gr., m. pl., ve. mst., subang. to rou. gravel, f. sand w/tr. wood frags. and natural gas							2
			w/tr. wood frags. and natural gas odor	20.5			29	20	51	3
	=			20.5			29	20	51	3
270.										6
879.1	22.5 –		GRAVELLY LEAN CLAY (CL),			-	_			1
	_	i	gr., m. pl., ve. mst., subang. to ang. gravel w/tr. wood frags. and natural gas odor							5
] =		and notural gas odor				₹.	4/28/	04	3
				31.1	41	23				2
	=									4
876.1	25.5 -	CL								4
	=	1	LEAN CLAY WITH GRAVEL (CL), gr. br., m. pl., mst., subang. gravel							1
	-									3
				20.2						7
	=					1				4
										8
873.1	28.5 -		SANDY LEAN CLAY (CL), br., m. pl., ve. mst., f. sand			_				2
	=		m, pl., ve. mst., f. sond		l					1 5
	=			18.4	27	15				8
	=									3
<u>8</u> 70.6	31.0		·							4
	=		SILTY CLAYEY SAND (SC-SM), gr. and br., low pl., ve. mst., f.							5
		SC- SM	sand	20.0			4	53	43	10
868.9	32.7 -									9
	_		LEAN CLAY WITH SAND (CL), gr., low pl., mst., f. sand w/tr. SS frags. and rnottled							10 5
	=		55 frags, and mottled	13.3						11
<u>8</u> 67.1	34.5	CL								45
	=		LEAN CLAY (CL), m. to low pl., mst. w/wd. shale and mottled	11.3						11
866.1	<u>35</u> .5 –		<u> </u>	11.5						50
	=		BOTTOM OF HOLE							
	=									
	-									
	=	1								
			,							
	=									
	=	1								
	=	1								
	-					1				
	=									
	=	,				1				
	-									
RH FOR	44 - M 1836-	. A		PROJECT				HOLE	NO.	

DRILLI	NG LO		ision eat Lakes and Ohio River	INSTALLATIO	CELR	H-EC-			OF	EET 1	HEETS
Dover Do				10. SIZE A					D 3" H BM or M		W
 LOCATION 32657 		is or Statlor E 23019		NG\	/D 29	S DESIGNA	ATION O	F DBILL			
3. DRILLING	AGENCY	HC NL	JTTING							AE 45	
4. HOLE NO.	. (As shown umber)	on drawing	///e : C-04-5A	13. TOTAL BURDEN	NO. OF C	OVER- S TAKEN	:DIST	URBED	15 :	IDISTURE	O
5. NAME OF	DRILLER	BRAG		14. FOTAL 15. ELEVAT							
6. DIRECTION		E .		16. DATE H			RTED		COMPL		
	ICAL IN			17. ELEVAT	_	OF HOLE	5/7/ 902			5/9/()4
			35.2 Feet	18. TOTAL							100×
9. TOTAL DE		_	105.2 Feet	19. NAME (OF INSPEC		TEWAR	RT.			
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description)	.s	мс	LL	PL	х - 4	X SAND	, -200	BLOWS
901.7	0.3 _	ML	GRAVELLY SILT WITH SAN	ID .	28.1						3 -
			(ML), dk. br., non pl., mst., gravel, f. sand w/org. and	animal							5
	_		DOORLY GRADED GRAVEL	WITH							8
		GP	SAND (GP), br., mst., ang. gravel, c. to f. sand w/SS	to rou. frags.	7.6						6
	-		and alluvium								14
899.0	3.0 -										11
033.0	5.0		SILTY SAND WITH GRAVEL								4
			br., non pl., mst., subang. t gravel, c. to f. sand w/SS	o ang. and LS							15
			frags and alluvium								17
	_	SM			6.7			38	46	16	14
											· ·
806.0	6.0										17
896.0	6.0 -		POORLY GRADED SAND W	ITH							-
	_		GRAVEL AND SLT (SP-SM non pl., mst., ang. to rou. c. to f. sand w/SS and LS) br							12
			c. to f. sand w/SS and LS and alluvium	frags.							16
	=	SP- SM			5.6			43	46	11	15
	-										10
											23
893.0	9.0 -		POORLY GRADED GRAVEL	WITH					_		19
			SAND (GP), br., ve. mst., a rou. gravel, c. to f. sand w	ng. to VSS		1					11
			and ES frags, and alluvium	1							10
	=	GP			7.2						7
	_										4
											2
890.0	12.0 -		POORLY GRADED GRAVEL	WITH							1 -
	=		SAND AND SILT (GP-GM), non pl., wet to ve. mst., si to rou. gravel, c. to f. san frags. and alluvium	br., Jbang.							3
	_		to rou. gravel, c. to f. san frags, and alluvium	d w/SS						1	5
	_	GP- GM			12.4						5
											5
	=	1									9
887.0	15.0 -		SILTY SAND WITH GRAVEL	(SM).						_	9 -
	=		br., non pl., wet, subang. to gravel, c. to f. sand w/SS	rou. frags.							4
]	and alluvium	. 3							9
	=				11.9			21	65	14	12
		_									7
		SM									10
		1	low pl. @ El. 884.0-El. 882	7	<u> </u>						8
			104 pr. 4 Lr. 004.0-El. 002	. /	17.0						5
882.7	19.3 _		CRAVELLY LEAD OLAY W	TLI \	13.0			[3
302.7	13.3 -	CL	GRAVELLY LEAN CLAY WI SAND (CL), gr., m. pl., ve. r	nst.,	00:						4
882.0		UL.	subang, to rou, gravel, c. t	O 1.	20.4				<u>L</u>		4
LRH FORM	M 1836				PROJECT Dov	r ver Dan	n		HOLE		-04-5A

PROJECT	over Do	ım	INSTALLATION HI	UNTING	TON E)ISTRIC	——— :Т			2
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	мс	LL	PL	у.	z	z.	BLOW
_ 0	ь	c c	(Description)				•4	SAND	-200	000
			GRAVELLY LEAN CLAY WITH SAND (CL), gr., m. pl., ve. mst., subang. to rou. gravel, c. to f.	20.4						4
			Sana							14
			mst., subang. gravel w/f. sand © El. 881.0-El. 878.0							3
										3
				20.7	35	23				5
	_									9
878.0	24.0~									5
070.0			LEAN CLAY WITH SAND (CL), gr., m. pl., mst., f. sond							WH
	-		gr., m. pr., mst., r. sond							3
	_			18.1	37	22				4
				10.1	3,	22				3
	=	CL								6
										9
										5
]	9
	=			16.2						13
										7
872.0	30.0 -									9
0.2.0			SANDY LEAN CLAY WITH GRAVEL (CL), br., m. pl., mst., subang. gravel, f. sand					 5/9/0	1	5
	_		gravel, f. sand				_	 	 	8
	=			16.2	38	23			1	12
										9
869.3	32.7.									8
			SILTY CLAY (CL-ML), gr. and br., low pl., mst. w/wd. silty SH and SH frags.							9
	=		Sh irags.	12.7						8
		CL- ML		6.4	BOX OR		P	EMARKS		17
0.55.0	75.2		gr., dry @ El. 867.5- El. 866.8	RECOV- ERY	SAMPLE NO.	(Dr	liling time. reathering.	water loss etc. If sign	s, depth of nificant)	14
866.8	35.2		SHALE: Gray silty mod hard	REC	,	_		9		50/.
	=		SHALE: Gray, silty, mod. hard, laminated to very thin bedded, weathered to 862.2, effervescent starting at 862.2.	REC 100%						
	=									
	-		45° Fracture at 862.2, and from 856.1 to 855.6.	RQD 0%	1					
	=		Vertical fracture from 860.3 to 860.2.							
	-		20° Fracture at 859.5.	1 00						
				L 0.0 REC	L					
	-			REC 100%						
	-	SH								
	=	1								
				RQD 24%	2					
	=		,	//.						
	=	-								
	-									
				£ 0.0	3					
	<u>44 —</u> м 1836 -		·	PROJECT				HOLE		

PROJECT D	over Do	ım	INSTALLATION	HUNTING	STON D	SHEET 3 DISTRICT OF 5 SHEET
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	Z CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling films, water loss, depth of weathering, etc., if significant)
	_			REC		
				100%	3	
	=			RQD 38%		
		CLI				
	_	SH			4	
					7	
	-			L 0.0		
				REC 100%		
	=					
851.6	E 0 4 =					
001.0	50.4		LIMESTONE: Grav hard fine to	-		
			LIMESTONE: Gray, hord, fine to med. crystalline grained, thick bedded, foss liferous.	RQD 90%	5	
	=					
	=	LS				
	_			L 0.0		
				REC 100%		
847.6	54.4			100%		
			SHALE: Dark gray, mod. hard, carbonaceous, fossiliferous, calcareous in upper part,		6	
			laminated.		.	
				ROD 45%		
		SH		13%		
	-	311				
	=					
					7	
843.3	58.7		CAMPOTONS	L 0.0		
			SANDSTONE: Gray, mod. hard, very fine grained, shaley, laminated.	REC 100%		
	-					
	=		Light gray with brown and maroon crossbeds, hard from 837.3 to 835.8.			
			20° Fracture at 834.5.	POD		
				RQD 93%	8	
	-	SS		L 0.0		
	_			REC 100%		
					9	
				RQD 94%		
	_=			3 . /.		
	=				10	
	68 =				10	
RH FOR	M 1836-	Α		PROJECT	ver Dai	m HOLE NO.

PROJECT	over Da	m	INSTALLATION H	UNTING	TON	DISTRICT OF 5	4
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	% CORE	BOX OR	REMARKS	
è LEVATION	b	C	(Description)	ERY	SAMPLE NO.	(Drilling time water loss, depth weathering, etc If significant,	OF)
				L 0.0			
				REC 100%	10		
	Ξ			100%			
	=						
	_			ROD			
	=			RQD 98%			
					11		
	_	SS					
	_	55		L 0.0			
				REC 100%	}		
				}	}		
J	\dashv					•	
]	13		
ľ				RQD	13		
1				98%			
1	=						
	=			1			
	\exists					,	
	=						
823.3	78.7			L 0.0			
	\exists		SILTSTONE: Gray, mod. hard, shaley, laminated.	REC 100%	13		
	\exists						
	=		Sandy zone from 822.2 to 821.7, 821.0 to 820.9, 819.8 to 819.3 and 817.9 to 817.7.				
			to 817.7.				
				RQD			
	-			90%			
	\exists	SLS					
	\exists				14		
			•				
				L 0.0			
	3			REC			
D17 6	, =	١	•	100%			
817.5	84.5 -		CANDETONE				
			SANDSTONE: Light gray, hard, med. grained, occassional silty shale, carbonaceous laminations				
1	=		shale, carbonaceous laminations crossbedded, micaceous.				
	크		Near vertical fracture from 811.1 to 810.7.	RQD 92%	15		
l	=			92%			
	_		25° Frocture at 807.5.				
			Siltstone zone, dark gray from 807.1 to 804.8.].			
	=		45° Fracture at 805.0.				
	\exists	SS					
}	3	23	Occassional coal stringers in last 3.0'.	L 0.0			
				REC 100%			
	_			100%			
1					16		
1	井						
1	_=						
1	\exists			RQD 88%			
ĺ	92				17		
	11836-	A .		ROJECT		HOLE NO.	

PROJECT D	over Do	m		INSTALLATION	HUNTING	TON D	ISTRICT	SHEET 5 OF 5 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF N (Description)	MATERIALS		BOX OR SAMPLE NO.	REM (Drilling time, wo weathering, etc	ARKS ther loss, depth of If significant)
			•					·
	=							
					L 0.0	17		
			•		REC 100%			
	~				100%			
	=							
					RQD 80%			
	=				80%			
						18		
	-							
		SS			L 0.0			
					REC 100%			
	=				100%			
	=					19		
	_				RQD 78%			
	=							
	=							
	=				L 0.0			
					REC 100%	20		
	=		•		ROD 67%	20		
796.8	105.2				L 0.0		<u> </u>	
	=		BOTTOM OF HOLE @	796.8				
	-							
	=							
	_							
	_							
	-							
	_							
	=	-						
	-	1						
] =	1						
	_							
	=							
		1						
] =	1						
		1	,		1			
] =	1						
		1						
	=	}						
	=							
LRH FOR	116							
LRH FOR MAY 04 001.dgn 1	M 1836	- A			PROJECT Do			HOLE NO.

DRILLI	NG LO		sion eat Lakes and Ohio River	INSTALLATI		H-EC-	 G			EET 1 5 SH	ieets.
1. PROJECT	_			10. SIZE A	_			RE AN			
Dover Da 2. LOCATION	_	s or Station		II. DATUM	FOR ELE				BM or M		
N 32658 3. DRILLING	0.98	E 2301	918.29	12. MANUF	VD 29 ACTURER	S DESIGN	ATION O	DRILL		ME 45	
4. HOLE NO.		HC NU		13. TOTAL	NO. OF (Dist	URB€D	:UN	DISTURB	
5. NAME OF	imber)		: C-04-6	14. TOTAL			exes 2		16 :		0
6. DIRECTION		BRAG	G	15. ELEVA			ER 87	1.8	COMPL	ETED	
			DEG. FROM VERT.	16. DATE I		:	4/28		:	5/5/0)4
			35.0 Feet	18. TOTAL					et		99.3%
9. TOTAL DE			70.5 Feet 105.5 Feet	19. NAME	OF INSPE	CTOR	TEWAR	— ?Т			
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA	LS	MC	LL.	PL	• 4	% SAND	// -200	BLOWS
901.8	0.3	CL-	GRAVELLY SILTY CLAY W SAND (CL-ML). dk. br., low	HTIV	28.6			-	+		3
	=	\ \ \vil\ \	mst., ang. gravel, f. sand v	v/tr. /							5
			POORLY GRADED GRAVEL SAND AND SILT (GP-GM),	WITH							11
	=	GP- GM	non pl., mst., subang. grav f. sand w/SS frags.	el, c. to	8.5						7
											11
899.1	3.0		CH TV CANG								16
	=		SILTY SAND WITH GRAVED br., non pl., mst., ang. to r								5
	=		gravel, c. to f. sand								11
		·SM			7.2			36	50	14	11
					-						10
											21
896.1	6.0 -		SILTY GRAVEL WITH SAND	O (GM),	-				+		19
			br., non pl., mst., ang. to r gravel, c. to f. sand	ou.							7 13
											16
	_				8.0						10
											15
	_										11
	_	GM				1					8
											8
					7.5						3
											2
											4
890.1	12.0 -		SILTY SAND WITH GRAVE	(SM)					-		7
			br., low to non pl., mst., s gravel, c. to f. sand	subang.				ĺ			4
											5
					10.4			21	62	17	11 5
											9
		1									10
			ve. mst. @ El. 887.0-El. 87	9.7		1					7
	=	SM									13
	=	JIVI									12
	=				11.9						9
											8
											8
											8
					10.0			19	65	16	13
											14
882.1											7.
RH FORI	M 1836				PROJEC	τ ver Da	m		HOLE	NO.	-04-6

B-LB0001.dgn 11/2/2006 10:17:02 AM

PROJECT D	over Do	ım_	INSTALLATION H	UNTING	TON	ISTRIC	T			2 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Obscription)	мс	LL	PL		% SAND	// -200	BLOW
o	b	с	SILTY SAND WITH GRAVEL (SM),							7
	=		br., low to non pl., mst., subang. gravel, c. to f. sand	10.0			19	65	16	6
	=	SM							 	4
				12.0						6
<u>8</u> 79.8	22.3		GRAVELLY LEAN CLAY (CL), gr.,							5
	_	CL	m. pl., mst., subang. gravel w/tr. org. and chert	23.4						2
979 1	240			25.4						3 16
878.1	24.0		POORLY GRADED SAND WITH							22
	=	SP- SM	POORLY GRADED SAND WITH GRAVEL AND SILT (SP-SM), It. br., non pl., rnst., subang. gravel, f. sand w/wd. SS	8.9						8
876.6	25.5									6
			SANDY LEAN CLAY (CL), gr., m. pl., f. sand w/tr. SS frags.							5
	=									8
				17.3	36 	21				9
										7
873.6	28.5									12
			SANDY LEAN CLAY (CL), gr., m. pl., mst., f. sanc							3
										6
	=	CL		15.9	35	21	⊽	5/4/0	<u>) 4</u>	4
	=								1	7
870.6	31.5									10
869.9	32.2		SANDY LEAN CLAY WITH GRAVEL (CL), gr., m. to low pl., mst., subang. gravel, f. sand	14.9						4
	_		LEAN CLAY (CL), gr. & br., low pl., mst. to dry w/wd. silty SH							7
			ph, mac. to dry #7 #d. ality 311	12.5						5
	_			5.5						15
867.6	34.5		CB TV CLAV (C ML) I-	RECOV-		(Dr	R liling time, realtering,	EMARKS water loss	s, depth of	35
867.1	3 <u>5.</u> 0 -	CL- ML	SILTY CLAY (CML), gr., low pl., dry w/wd. silty SH	ERY	NO.		y,	9.		50
	_		SHALE: Gray, silty, soft to mod. hard, laminated, slightly effervescent starting at 860.6 and continues to 852.0.	REC 86%						
	=		and continues to 852.0. Near vertical fracture from							
			865.5 to 863.6.	RQD 0%	1					
	=		Vertical fracture 859.8 to 859.5.							
			20° Fracture at 857.8.	L 0.5						
			45° Fracture at 856.3.	REC						
	=	C) :		100%						
		SH								
	. =			500	2					
				ROD 46%						
	=									
	=				I					
	=			L 0.0	3					
LRH FOR	44 -			PROJECT				HOLE		

PROJECT	over Do	m	INSTALLATION	HUNTING	STON D	ISTRICT OF 5 SHEET
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth of weathering, def., if significant)
a	ь	c	đ	ERY	NO.	weathering, etc., if significant)
	=			REC 100%	_	
					3	
	_					
				RQD 38%		
		SH				
	=	311			4	
				L 0.0		
	_					
	_			REC 100%		
852.0	50.1					
0.52.0	30.1		LIMESTONE: Gray hard fine to	1		
	=		LIMESTONE: Gray, hard, fine to med. crystolline grained, thick bedded, fossiliferous.	BUD	5	
				RQD 82%		
,						
		, _			\vdash	
	_=	LS				
	Ξ			L 0.0		
	_			REC	6	
0.7.				100%		
847.4	54.7 –		SHALE: Dark aray mad back	-		
			SHALE: Dark gray, mod. hard, calcareous in upper 0.6', fossiliferous, laminated.			
			45° Fracture at 846.9.	RQD		
				86%		
		SH				
	=				7	
843.5	58,6			L 0.0		
			SANDSTONE: Gray, hard, very	REC 100%		
	=		SANDSTONE: Gray, hard, very fine grained, shaley, thick bedded.	100%		
			Light gray, med. grained and			
	-		Light gray, med. grained and crossbedded from 836.4 to 835.3.		8	
			30° Fracture at 829.5.	RQD 98%		
	=		50° Fracture from 821.2 to 820.8.	98%		
	===		020.0.			
	=					
	=	SS		L 0.0		•
	_			REC 100%	9	
				100%		
					\square	
	=					
]			RQD 96%	10	
D	68_					
RH FOR	м 1836-	Α		PROJECT	ver Dar	m HOLE NO.

PROJECT Do	over Da	m	INSTALLATION HI	UNTING	TON D	SHEET 4 OF 5 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
	ь	c	· d	-	<u>'</u>	9
	_		·	L 0.0	10	
				REC 100%		
	-			100%		
					11	
					' ''	
ĺ	_			RQD 98%		
	=					
			·			
		SS		L 0.0	12	
	_=			REC 100%		
	=			100%		
	\exists					
	_					
				RQD 94%		
	=					
					13	
	~					
823.5	7 <u>8</u> .6 –		SILTSTONE: Cray mad hard	L 0.0		
			SILTSTONE: Gray, mod. hard, shaley, laminated.	REC 100%		
	_					
	_				14	
	=			ROD		
	. =	SLS		RQD 90%		
,						
	Ξ		·			
010.1				L 0.0		
818.1	84.0 -		SANDSTONE: Light gray band	REC 100%	15	
	-		SANDSTONE: Light gray, hard, med. grained, crossbedded in thick beds, micaceous, occassional silty-shale laminations and wavy stringers.			
			occassional silty-shale laminations and wavy stringers.			
	_		Shaley, dark gray zone from 807.3 to 806.8 and 806.4 to 805.6.			
	_		to 805.6.	RQD 88%		
			Coallaminations from 797.8 to 797.4.			
	=		Zone with numerous fractures from 808.4 to 806.7.			
	=	SS	from 808.4 to 806.7.		16	
	_	33		L 0.0		
				REC 100%		
	. =				17	
				ROD 78%	''	
				10%		

PROJECT	over Dam	INSTALLATION	HUNTING	TON DI	STRICT	SHEET 5
	over built		HUNTING			OF 5 SHEETS
ELEVATION	DEPTH LEGEND	CLASSIFICATION OF MATERIALS (Description)	X CORE RECOV- ERY	SAMPLE NO.	REMARK (Drilling time, water weathering, etc., if	ioss, depth of significant)
0	b c	d	ERY		9	
	=			17		
]		L 0.0			
	_		REC 100%			
	_		100%	18		
	l <u> </u>					
			ROD 50%			
	-		50%			
				19		
	= ss					
			L 0.0			
			REC 100%			
			100%			
	==					
			ROD	20		
			RQD 84%			
			L 0.0			
	$\overline{\exists}$					
			RE'C 100%	21		
]		RQD 75%			
	-					
796.4	105.7		L 0.0			
		BOTTOM OF HOLE @ 796.4				
]					
	_					
		1				
		1				
	~					
	116					
RH FOR	M 1836-A		PROJECT Do		THC	LE NO.

	NG LO		eat Lakes and Ohio River	INSTALLATIO	CELR	H-EC-		05 411	OF	5 SH			
1. PROJECT Dover Da			<u> </u>	10. SIZE A					D 3" H		<u>w</u>		
2. LOCATION N 32665			2051.77	NG\	√D 29								
3. DRILLING		HC NU		12. MANUFACTURER'S DESIGNATION OF DRILL CME 45									
4. HOLE NO.	(As shown	on drawing	title : : C-04-7	13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED BURDEN SAMPLES TAKEN 12 0									
5. NAME OF	DRILLER	BRAG		14. TOTAL									
6. DIRECTION	OF HOLE			15. ELEVAT			ER 87 RTED	2.4	COMPL				
	CAL [] IN			17. ELEVAT		OF HOLE	_5/19/ 886			5/21/	04		
7. THICKNES			28.1 Feet	18. TOTAL							100%		
9. TOTAL DE			96.2 Feet	19. NAME (OF INSPEC		TEWAR	T.					
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description)	.5	мс	LL	PL	. 4	% SAND	% -200	BLOWS		
0	ь	c	POORLY GRADED GRAVEL	WITH							3		
			SAND (GP), dk. gr., mst., si to ang. gravel, c. to f. san frags.	d w/Ls	6.5						3		
											5		
		GP	It. br., subang. gravel w/SS @ El. 885.4-El.883.9	frags.					1		10		
					8.8						5		
			gr., dry, ana. gravelw/wd. I	_S @							23		
883.7	3.3 -		gr., dry, ang. gravel w/wd. l El. 883.9-El. 883.6			BOX OR		R	EMARKS		50/.3		
	=				RECOV- ERY		(Dr	IIIIna time.	water loss etc., If stgr	, depth of oif logat)			
	_					'			9				
	=												
880.4	6.6												
	_	NS	NO SAMPLE								AUGEF		
879.5	7.5 _		POORLY GRADED GRAVEL	WITH									
			SAND (GP), gr. br., wet, sul to ang. gravel w/SS & LS	bang. frags.							6		
				J							6		
	_				10.9						5		
											9		
876.5	10.5	GP									6		
0,70.0	10.5 =	Gr	POORLY GRADED GRAVEL	(GP),							54		
	_		gr. br., wet, subang. to and w/SS frags.	, graver							60		
					8.9						51		
	=				0.3						45		
											56		
873.5	13.5 =		OLAVEY OR WE			, ,					51		
			CLAYEY GRAVEL (GC), gr. pl., wet, subang. to rou. gr SS frags. & alluvium	br., m. avel w/							57		
	_		j 33 irags. & alluvium		1			_₹ 5	/21/0	<u>4</u>	67		
	_	GC			26.9						21		
											1		
											20		
870.5	16.5		WELL GRADED SAND WITH								1		
			J GRAVEL (SW), wet, subana	. to	1						1		
			ang. gravel, c. to f. sand v SS frags., alluvium and se odor	ewer							1		
		SW			17.9						1		
	_							l			1		
D07.	10.5		SILTY CLAYEY SAND WITH GRAVEL (SC-SM), br., low	1							1		
867.5	19.5 -	SC-	/GRAVEL (SC-SM), br., low subang. to rou. gravel, c. t sand w/SS frags. and allu	pl., wet,∖ oʻf.	14.0			29	50	21	WH		
867.0	20.0	SM	sana w/55 trags, and allu	vium	PROJEC			29	50 HOLE	21	WH		

PROJECT D	over Do	m	INSTALLATION	UNTING	TON [DISTRIC	——- :Т		1ΕΕΤ 2 5 s	HEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	мс	ŁĻ	PL	% •4	.х SAND	, -200	BLOW
0		SC- SM	SILTY CLAYEY SAND WITH GRAVEL (SC-SM), br., low pl., wet, subang, to rov. gravel, c. to f. sand w/SS frags, and alluvium	14.0			29	50	21	WH 23 10 15
864.5	22.5	GP	POORLY GRADED GRAVEL (GP), br., wet, ang. to rou. gravel w/SS frags. and alluvium	8.0			_			10 2 9
863.0	24.0	0.1	GRAVELLY LEAN CLAY WITH SAND (CL), gr. br., m. pl., ve. mst. to mst., subang. to rou. gravel, f. sand w/tr. wood frags.							3 6 7
860.0	27.0	CL	CLAYEY GRAVEL WITH SAND (GC), gr. br., m. pl., mst., ang. to rou. grovel, c. to f. sand w/SS and flint frags, and alluvium	23.1 √14.3	41	23	-			4 8 7
859.2 858.9	27.8 ⁻ 28.1	GC GP	POORLY GRADED GRAVEL WITH SAND (GP), gr. br., mst., subong. Jto ang gravel, c. to f: sand w/ calcareous or concrete	% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Dr	Ri liling time, eathering,	EMARKS water loss etc If sign	depth of	12 46 50/
	-		CONCRETE: Drilled without sampling.	REC 100%						
				RQD	2		,			
			·	REC 100%						
	-	CON		RQD	3					
				L 0.0						
				REC 100%	4					
848.6	38.4 =		LIMESTONE: Dark gray, hard to very hard, fossiliferous.	RQD 100%						
	-			L 0.0	5					
	-	LS		REC 100%						
843.2	43.8	SH		RQD 46%	6					
RH FOR	м 1836-			PROJECT	ver Do			HOLE	NO. C-	

PROJECT D	over Do	m	INSTALLATION	HUNTING	TON	DISTRICT OF 5 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Obscription)	% CORE	BOX OR SAMPLE	OF 5 SHEETS REMARKS (Orilling line, water lass, depth of weathering, etc., if significant)
0	b	С	d	· ·	NO.	\$
			SHALE: Dark gray, carbonaceous mod. hard.	5,	6	
			Fossiliferous from 843.2 to 842.9.			
			Silty from 843.2 to 842.1.			
			,	L 0.0	,	
		SH		REC 1007	7	
	_					
			COAL: Black, Boney coal from	٦		
839.5	47.5 -		COAL: Black. Boney coal from 839.5 to 839.0. Vitreous from 839.0 to 838.2.	RQD	_	
838.8	48.2 ~	С	Vertical fracture from 839.5 to 839.0.	39%		,
0.00.0		_				
			SANDSTONE: Cray, mod. hard, fine grained laminated and shaley with shale stringers and occassional interbeds.		8	
	=		Silty from 817.7 to 817.2.			
			Wavy laminations from 815.8 to 815.6.	L 0.0	1	
	=		to 815.6.	100%	<u> </u>	
				RQD 100%	9	
	_			100%		
	=					
	=					
	=			L 0.0		
] =			REC 100%		
				100%	10	
		SS		RQD 100%		
	=	33				
	=				11	
				L 0.0]	
				REC 100%		
	=					
	=			RQD 100%		
				100%	12	
	=				"-	
]		L 0.0 REC		
	=			REC 100%	13	
	_ =					
LRH FOR	68 -	1		PROJECT Do		HOLE NO.

DRILLING			INSTALLATION				SHEET 4
D	over Do	im	Н	UNTING	TON DIS	STRICT	OF 5 SHEETS
ELEVATION	DEPTH 6	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Orliling time, wate weathering, etc.,)	RKS I loss, depth of If significant)
0	_	c	d	RQD		9	
	_			92%	13		
	_	_					
	=	SS					
	_						
	=						
	-			L 0.0	14		
815.6	71.4	_		REC			
			SILTSTONE: Gray, mod. hard, laminated, shaley, effervescent.	100%			
	_		Vertical fracture from 813.3				
	=		to 813.0.				
	_						
				RQD 76%			
				/0/.	.		
		SLS			15		
	-						
				L 0.0			
	=		,	REC 100%			
	_			100%			
	77.9 -		,				
809.1	//.9 -		SANDSTONE: Link and the same	1	16		
			SANDSTONE: Light gray, hard, crossbedded, med. to coarse				
			grained, micaceous.	RQD 90%			
			Several very thin lenses of dark gray, very soft clay from 807.9 to 807.8.				
	=		Vertical surface crack from 804.0 to 803.8,				
			Coalstringers from 798.5 to 798.2.	L 0.0			
	=			[SEA	17		
	_		Coal laminations averaging 0.01' thick from 792.6 to 791.5.	100%			
	=						
			Vertical fracture from 791.9 to 791.5.				
	_		·				
				RQD 90%			
	=				,		
					18		•
	=	SS					
				L 0.0			
				REC 100%			
	=						
	_				19		
	=			RQD 84%			
	_			84%			
	=						
	_						
	- =			1 00	20		
	=	.		L 0.0			
	92 -			REC 100%			
RH FOR		A	-	PROJECT	ver Dam		IOLE NO.

PROJECT	LOG					INST	LLATION	6.95					SHEET	5
De	over Da	im						H	JNTING	TON D	ISTRICT			SHEETS
ELEVATION 0	DEPTH 6	LEGEND c	CL	ASSIFIC	ATION OF Description	MATER	IALS		% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Ortilling weathe	REMAR time, water ring, etc ii	KS 10ss, depth 1 significant	of))
									ROD				_	
									ROD 78%	20				
	=													
	=	SS												
	_													
										21				
790.8	96.2								L 0.0					
			BOTTON	A OF	HOLE	© 79	0.8				_			
	_													
												-		
]					**						
	=					+								
	=													
	_													
	_													
	_													
	=					•								
	_													
	=													
	=													
	=													
	=	-												
		1												
	_													
	=													
	-													
	=													
	-													
,] =													
	-]												
	=	-												
	-									,				
	=			,										
	-	1												
	110	1												
LRH FOR	116 -	<u> </u>	L						L	ver Do			IOLE NO.	

B-LB0001.dgn 10/24/2006 12:05:20 PM

	NG LO		sion eat Lakes and Ohio River	INSTALLATIO	CELR	H-EC-			OF	EET 1	
1. PROJECT Dover Do	m			10. SIZE AN				_	0 3" F		W
2. LOCATION		s or Statton)		10K ELE	VATION :	SHOWN	(1 6	W OF M	SLI	
N 32622 3. DRILLING			2153.36	12. MANUFA	CTURER'S	DESIGN	ATION OF	ORILL	CN	— ИЕ 45	
4. HOLE NO.	(As shown	HC NU on drawing	IIIIe :	13. TOTAL BURDEN	NO. OF O		DIST	JRBED 1		IDISTURB	ED O
5. NAME OF			: C-04-8	14. TOTAL	NUMBER	CORE BO	xes 17				
6. DIRECTION	OF HOLE	BRAG	<u>G</u>	15. ELEVAT			ER 86	9.3	·COMPL	CTED	
			DEG. FROM VERT.	16. DATE H		:_	6/4/		_:	6/5/0	4
7. THICKNES	S OF OVE	RBURDEN	27.3 Feet	17. ELEVAT					et		99.3×
B. DEPTH DE	RILLED INT	O ROCK	56.0 Feet	19. NAME C			701 00	-			99.5
9. TOTAL DE	PTH OF H	HOLE	83.3 Feet]		K	SER				
ELEVATION 0	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description)	.\$	MC	LL	PL	У. • 4	X. SAND		BLOWS
885.1	0.3 -	NS	NO SAMPLE - TOPSOIL SANDY LEAN CLAY (CL),	0.00							3
	Ξ		low pl., mst., f. sand w/tr.	org.							4
		_	and SH frags.								4
		CL			13.5						3
											4
000]										4
882.4	3.0 -		CLAYEY GRAVEL WITH SA								
			(GC), br. gr., low pl., mst., gravel, f. sand w/SH and		, ,			7.0		4.0	3
			frags.	-	11.1			30	21	49	4
		GC	br and ar w/SIS from 8	,							5
			br. and gr. w/SLS frags. © El. 880.8-El. 879.3		.						3
	-				10.6	28	19	30	29	41	3
879.4	6.0 -										4
-	=		GRAVELLY LEAN CLAY W	ITH mst							3
	=		SAND (CL), br. gr., low pl., subang. to rou. gravel, f. s SS frags. and alluvium	and w/	14.8			25	24	51	3
877.9	7.5 =	1	55 Hags. and allaylant								4
0//.3	7.3	CL	SANDY LEAN CLAY WITH								4
			(CL), br. gr., low pl., mst., to rou. gravel, r. sand w/t	subang. r. SH	14.3	30	20	20	29	51	6
	_	1	frags., flint, and alluvium		17.5	30	20	20	23		
876.4	9.0		SILTY CLAYEY SAND WIT	Н						<u> </u>	9
	=	sc-	GRAVEL (SC-SM), br. ar., I	ow pl.,	11.0			07.4	14.0	7.0	4
		SМ	mst., ang. to rou. gravel, f w/tr. org., SS frags., and	alluvium	11.6			23.4	14.6	35	6
874.9	10.5	· ·	CUTY ODAYEL WITH COM								9
			SILTY GRAVEL WITH SAND (GM), br. & gr., low to not	1						1	18
	=	1	(GM), br. & gr., low to no pl., mst., ang. to rou. grav to f. sand w/flint and SS	ei, c. frags.	7.2						32
	=	GM		_							18
	=	3 0 10	br. gr., low pl. w/alluvium El. 873.3-El. 871.8	Ø							7
	=	1	2., 0, 0,0 2 0, 1,0		12.1	29	23				7
. 0710	17 5	1									7
871.8	13.5 _		SILTY CLAYEY SAND WIT	H .							4
	-		GRAVEL (SC-SM), br. gr., I mst., ang. to rou, gravel, o	c. to				7.5	,,,	0.0	
	=		f. sand w/flint, alluvium, ar frags.	nd SS	9.0			35	37	28	11
	_	SC- SM		ı, gravel		-			 -	-	9
			br. and gr., subang, to row @ El. 870.3-El. 368.8	3. 2.1.01					1		7
					9.0			₹_	6/4/	04	9
868.9	16.5	-							<u> </u>	1	12
	=		CLAYEY GRAVEL WITH SA (GC), gr., low pl., wet to v	AND re. mst		ĺ	[4
	_	GC	(GC), gr., low pl., wet to v subang. gravel, c. to f. sai w/SS and SLS frags.	nd	13.8	l		36	35	29	4
867. š	18.0 -						1				8
007.9	10.0		WELL GRADED GRAVEL W SAND AND SILTY CLAY (GW-GC),	+-	1			_	 -	7
	-	GW-	br., low pl., wet, subang. to gravel, c. to f. sand w/SS	ono i							
	_	ĞĈ	SLS frags. GRAVELLY LEAN CLAY W		12.7						11
865.9	19.5		JSAND (CL), dk. gr., m. to	low pl.,		-					10
865.4		CL	/SAND (CL), dk. gr., m. to ve. mst. to mst., subang. sand w/SS and SH frags	yruvel, f.							2
LRH FOR	M 1836				PROJEC	τ ver Do	m		HOLE		-04-8

PROJECT D	over Do	ım	INSTALLATION HI	UNTING	TON D	ISTRIC		SH OF		HEETS
			CLASSIFICATION OF MATERIALS				z.	// // // // // // // // // // // // //	4 S	
ELEVATION	DEPTH	LEGEND	(Description)	MC	LL	PL	•4	SAND	-200	BLOW
			GRAVELLY LEAN CLAY WITH SAND (CL), dk. gr., m. to low pl.,							11
	=		ve. mst. to mst., subang. gravel, f. sand w/SS and SH frags.	13.9						6
	=		gr. br., low pl., ve. mst. © El. 864.3-El. 862.8							3
	_		El. 004.3 El. 002.0	16.4	27	18				5
862.9	22.5									6
	=	CL	SANDY LEAN CLAY WITH GRAVEL (CL), gr., m. pl., ve. mst., f. sand							2
	_			17.9						2
861.4	24.0	}								3
	_		GRAVELLY LEAN CLAY WITH SAND (CL), gr., m. pl., ve. mst. to mst., subang, gravel, f. sand w/						!	5
			SS and SH frags and alluvium	11.4			34	15	51	5
859.9	25.5		SILTY CLAVEY CDAVEL MITH		,					32
		0.5	SILTY CLAYEY GRAVEL WITH SAND (GC-GM), gr. & br., low pl., mst. to dry, subang, to ang.	9.6 8.6		•				26
		GC- GM	gravel, c. to f. sand w/wd. sandy SH frags.]						9
858.2	27.3 -									9 50/.
	=		Siltstone boulders and cobbles	% CORE RECOV-	BOX OR	(Dr	IIIIna time.	EMARKS water loss	death of	V
	-		overlying about 0.8' of sandy lean clay with gravel.	ERY	NO.	4	reathering,	etc. If sign	olf (cant)	
	_			REC 95%						
	_	SLS			1					
	=			RQD N/A						
0540	71 ~			L 0.2						
854.2	31.2		LIMESTONE: Gray, hard, fine to	REC 96%		*				
			med. crystal ine grained, thick bedded grading into underlying shale at 849.4, fossiliferous.	30%						
	=		shale at 849.4, fossiliferous.							
					2					
	-			RQD 96%						
	-	LS		30%						
	=									
	_	-								
849.4	36.0			L 0.2						
<u> </u>	-		SHALE: Dark gray to black, mod.	REC	3					
	=		SHALE: Dark gray to black, mod. hard, laminated, carbonaceous, fossiliferous in upper portion.	100%						
	=		30° Fracture at 848.8.	ROD						
	-	1		RQD 34%						
	=	<u> </u>								
	=	SH		L 0.0	-					
	_			100%	4					
	-	1								
044 =										
844.5	40.9 -	\ c /	ACOAL: Black witzons (1						
\ <u>844.3</u> /	41.1 7	-	SHALE: Gray mod band silty	RQD 44%						
	-		SHALE: Gray, mod. hard, silty, laminated, gradational into underlying sandstone at 842.8.							
	-	SH	, , , , , , , , , , , , , , , , , , , ,		5					
0.410	475	-								
841.9	43.5 -	SS		L 0.0						
LRH FOR				PROJECT	1			HOLE	NO.	

DRILLING PROJECT			heet) ELEVATION TOP OF HOLE 885.38	3		Hole No. C-04-8
Do	over Da	ım		UNTING	TON D	ISTRICT OF 4 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
			SANDSTONE: Light gray to gray,	REC		
			mod. hord, very fine grained, very silty, thin to thick bedded.			
	_				6	
			,	RQD 96%		
				30%		
	_					
	_	SS				
	_			L 0.0		
				REC 100%	_	
					7	•
				RQD 90%		
833.0	52.2					
	=		SANDSTONE: Light gray to gray, mod hard to hard, fine to			
	7		medium groined, zones silty, thin to thick bedded, occassional shale stringers and laminations throughout,		8	
			occassional shale stringers and laminations throughout, cross-bedded zones below	L 0.0		
	_		825.6, micaceous.	100%		
	_		Sholey from 830.4 to 829.2.			
			Shale layer, dark gray from 820.4 to 820.2.			
	_			RQD	9	
	=			94%		
						•
		SS		L 0.0	10	
				REC 100%		
	1			100%		
	_		•			•
	. =			RQD 88%	11	
	_=			L 0.0		
	=			REC 100%	12	
820.2	65.2				'-	
	_		SANDSTONE: Light gray to gray,	1		
			SANDSTONE: Light gray to gray, mod. hard to hard, medium to coarse grained, thin to thick bedded, occassional shale stringers and lominations and zones throughout, zones cross-bedded, micaceous.	RQD 96%		
		SS	stringers and laminations and zones throughout, zones			
			ci oss-peaded, micaceous.		13	
	68 -			L 0.0		
RH FOR	и 1836 -	Α	-	PROJECT	ver Dar	m . HOLE NO.

PROJECT	LOG (C		1000		INSTALLA					No. C	SHEET	4
. De	over Dan	n T					HUNTING				of 4	SHEETS
ELEVATION	DEPTH	LEGEND	CLA	SSIFICATION (Descrip	OF MATERIALS		% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drlilling weathe	REMARK fime, water ring, etc., if	S loss, depth o significant)	(
	_		Sandst	one cont	inued:							
			Occ	ossional c	oal stringe	rs	55.0					
	=		8	12.8 to 8	oal stringe tions fron 303.6, at 804.9.	1	REC 100%					
			6.	specially	d(604.9.							
	E							14				
							ROD					
							RQD 87%					
	=											
							L 0.0					
							REC 100%	15				
		SS										
		33										
		ĺ					RQD 86%					
							867.					
		ĺ						16				
								16				
							L 0.0					
							REC 100%					
							100%					
							POD					
		ľ					RQD 65%	17				
	=							17				
802.1	83.3						L 0.0					
002.1	65.5		BOTT	OM OF H	OLE @ 80)2.1	1.0.0					
			3	- · · ·								
	=											
	=											
		J										
	• =											
	92											
LRH FORI	M 18.36 - A						PROJECT DO			но	LE NO.	

DRILLIN	1G FO	G DIVIS	eat Lakes and Ohio River	INSTALLATIO	CELRI	H-EC-			OF	ET 1 4 SH	
. project Oover Dar	m			10. SIZE AN					0 3" H		N
LOCATION	(Coordinate:			11. DATUM NGV	FOR ELE <u>(D_</u> 29	VALIUN S	SHOWN.	./8	n OI MS)L/	
326266	_			12. MANUFA		DESIGN	ATION OF	DRILL		E 45	
		HC NU		13. TOTAL	NO. OF O	VER-	DISTU		UNE	DISTURBE	
and file nui	(As shown mber)	on drowing	C-04-9		SAMPLES		: 16		6 :		0
. NAME OF	DRILLER	BRAG	G	14. TOTAL 15. ELEVAT							
DIRECTION	OF HOLE			16. DATE H			RTED		COMPL		
X VERTIC	CAL IN	CLINED	DEG. FROM VERT.	17. ELEVAT	ION TOP	OF HOLE	6/3/0 884			6/4/0	4
			30.1 Feet	18. TOTAL							100 ×
. TOTAL DE			52.0 Feet 82.1 Feet	19. NAME 0	F INSPEC		SER				
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA	LS	MC	LL	PL	% •4	Х SAND	/ -200	BLOWS
a	ь	c	SANDY LEAN CLAY WITH	GRAVEL							3
	_		(CL), br., low pl., mst., sub gravel, f. sand w/SH frags	ang.	14.9						
			- 5 - 2 - 2 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1	-	14.9						3
883.3	1.5 =	CL	SANDY LEAN CLAY (CL).	hr m							3
	_		pl., mst., f. sand w/tr. SH		10.7	77	24				2
	=]			16.3	33	21				3
881.8	3.0 -		OILTY OLIVEY OF THE	UT14							3
	=		SILTY CLAYEY GRAVEL V SAND (GC-GM), br., low pl	/							4
		GC- GM	mst., subang. gravel, f. sar	nd	10.1						6
880.3	4.5 -										7
	_	-	SILTY CLAYEY SAND WIT GRAVEL (SC-SM), gr., low								4
	=		mst., subang. to rou. grav	el, f.	13.8			16	44	40	4
		SU-									6
	_	SC- SM								_	2
	-]			15.0						4
0777	· —							1			10
877.3	7.5 –		SILTY GRAVEL WITH SAN		_						20
	-	<u> </u>	dk. gr., low to non pl., ms subang. to ang. gravel, f.	it.,	11.3						17
	-	GM	SLS frags.		5						
875.8	9.0 -		GRAVELLY SILTY CLAY	WITH							5
		CL-	SAND (CL-ML), gr. br., low	pl.,	1,, ^		1	0.5	2.	e 4	2
	_	MŁ	tr. SH frags.		14.2			25	24	51	1
874.3	10.5 -	_	SILTY CLAYEY SAND WIT	·H		}					1
		SC-	GRAVEL (SC-SM), gr. br., mst., subang. gravel, f. sa SS frags.	low pl.,						_	2
	_	SC- SM	SS frags.	.5 117	11.4			35	41	24	5
872.8	12.0	_	CILTY OLAYEV COAVEL A	MITH		-					3
	=	1	SILTY CLAYEY GRAVEL N SAND (GC-GM), gr. br., lov ve. mst., subang. to rou. (sand w/SS frags. and alli	v pl.,							2
	_	_	sand w/SS frags, and all	uvium	15.5						4
	-	_								_	8
	-		wet @ El. 871.3-El. 868.3								2
	-	GC- GM							I		4
	-	_			15 5			₹ .	6/3/04	1	4
		3			15.5			40	39	21	6
	=	1									3
0007	16 5										1
868.3	16.5 -		SILTY CLAYEY SAND WIT	ГН	+	1					2
		\exists	GRAVEL (SC-SM), gr. br., wet, ang. gravel, c. to f. s w/SS frags. and alluvium	low pl., and							1
			w/SS frogs. and alluvium					1			1 '
		SC- SM			16.1			39	41	20	2
		SM									0
	_		ED WELL VIEW CO. W.	UT.:							0
865.3	19.5		GRAVELLY LEAN CLAY V SAND (CL), m. pl., wet to	ve. mst	<u> </u>						1
864.8	20.0		subang. to rou. gravel, c.	to f.	20.5			29	20	51	0
	м 1836				PROJEC	T.			HOLE	NO.	

PROJECT D	over Do	ım	INSTALLATION H	UNTINO	STON D	ISTRIC	т			2 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	MC	LL	PL	.4	X SAND	х -200	BLOW
862.3	22.5 —	CL	GRAVELLY LEAN CLAY WITH SAND (CL), m. ol., wet to ve. mst., subang, to rou. gravel, c. to f. sand	20.5			29	20	51	0 1 0 1
			CLAYEY GRAVEL WITH SAND (GC), gr. br., low pl., wet, subang. gravel, f. sand w/SH and SS trags.	22.7	32	22	31	20	49	WH WH O O
	=======================================	GC	m. pl. & El. 859.3-El. 854.8	23.4	36	22	31	20	49	0 1 2
				25.4			.31	20	49	0 0 1
854.8 854.7	30.0		gr., subang. to ang. gravel w/SS and flint frags. © El. 856.3- El. 854.8 NO RECOVERY	21.3						1 2 3
		LS	LIMESTONE: Gray, hard, fine to med. crystaline grained, medium to thick beaded, grades into underlying shale at 850.3, fossiliterous. Near vertical fracture from 854.7 to 854.0. Weathered bedding plane at 850.3.	DECOM	BOX OR SAMPLE NO.	(Dr w	IIIIna time.	EMARKS , water loss etc If sign g	s, depth of nifficant)	
850.3	34.5		SHALE: Dark gray to black, mod. hord, laminated, carbonaceous, fossiliferous in upper part. Near vertical fracture from 846.2 to 845.7.	RQD 86% L 0.0 REC 100%	2					
845.9	38.9	SH		RQD 49%	3					
845.7	\39.1 f	∖ C / SH	COAL: Black, v.treous SHALE: Gray, mod. hard, laminated, silty to sandy, grades into very fine grained sandstone below 843.8.	L 0.0 REC 100%						
		SS	SANDSTONE: Gray, mod. hard, very fine grained, silty, thin to thick bedded, grades to siltstone below 836.9.	RQD 92%	·4					
	44 = M 1836-			L O.O				HOLE		

DRILLING	LOG (Con	Sheet)	ELEVATION TOP OF	884.8	2		Hole No. C		
	over Dam			INSTALLATION +	IUNTING	TON DI	STRICT	SHEET 3 OF 4 SHEETS	
ELEVATION	DEPTH LEGE	ND	CLASSIFICATION OF (Disscription)	WATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARK (Drilling time, water weathering, etc., if	(S loss, depth of significant)	
					REC 100%	5			
836.9	47.9				RQD 98%				
			STONE: Gray, m aley, sandy, lam in bedded.	od. hard, inated to	L 0.0	6			
834.2	50.6	SANE	STONE: Grav.		REC 100%				
		st	OSTONE: Gray, and hard to hard to hard to hard edium grained, caeous, scatter ringers and lam tly to shaley from 128.6.	cross-bedded ed shaley inations. om 831.3 to 829.0 to	1007.	7			
			ialey from 828 126.9 to 826.8, 122.7 to 822.6	and from	L 0.0 REC 100%	8			
	ss s				RQD 80%	9			
	11/11/11/11				L 0.0 REC 100%			2)	
					RQD 98%	10			
820.7	64.1	SANE	OSTONE: Light g	ray to gray. d, medium	L 0.0 REC 100%				
	- ss	lar mi	coarse grained oss-bedded, me ick bedded, occ ale stringers ar minations throug caceous.	id ihout,	RQD 94%	11			
			rom 812.8 to						E
LRH FORI	68 <u> </u>	(c	ontinued on foll		L 0.0	ver Dan	но	LE NO. C-04-9	E

DRILLING	LOG	(Cont S	heet) ELEVATION TOP OF HOLE 884.82	2		Hole No. C-04-9
	over Do	ım		UNTING	TON D	SHEET 4 OF 4 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Doscription) d	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
			SANDSTONE: Continued from previous page			
}	_		20° Fracture at 812.4.	REC	12	
			20° Fracture along coal lamination at 804.7.	100%		
	_					
	=		Several coaly laminations from about 804.7 to 802.7.			
				RQD		
	=			86%		•
					13	
	=					
	_					
				L 0.0		
				REC 100%		
				100%		
		SS				
					14	
	=					
				RQD 86%		
	=		l .			
				L 0.0	-	
				REC 100%	15	
				ROD 87%		
	_			87%		
	=			L 0.0	16	
			BOTTOM OF HOLE @ 802.7			
	_					
						·
	=					·
	-	1				
	=					
	-					
	=					
		-		1		
] =	1				
	-					
] =	1				
	=					
	=					
	=					
	92 -					
LRH FOR	м 1836-	Α .		PROJECT Do	vor D	HOLE NO.
MAT U4	0/04/00	06 10:10	2:25 PM	DO	ver Da	m C-04-9

DRILLI	NG LO		sion eat Lakes and Ohio River	INSTALLATI		H-EC-	G			EET 1	HEETS
1. PROJECT				10. SIZE A					D 3" i	HOLLO	
Dover Do 2. LOCATION		s or Station	J	11. DATUM	FOR ELE	VATION	SHOWN	(TΒ	M or M	(SL)	
N 32632	8.49		2312.07	12. MANUF		S DESIGN	ATION O	F DRILL		15	
3. DRILLING	AGENCY	HC NU	ITTING	13. TOTAL	NO OF C	OVF P -	'DieT	URBED		ME 45	
4. HOLE NO and file in	. (As shown umber)	on drawing	IIIIe : C - 0 4 - 10		NO. OF C				20 :	DISTURE	O
5. NAME OF		DD 40		14. TOTAL							
6. DIRECTION	N OF HOLE	BRAG		15. ELEVAT			ER 86	3.1	COMP	ETED	
_	ICAL 🗀 IN		DEG. FROM VERT.	16. DATE F			6/7/			6/8/0)4
7. THICKNES	S OF OVE	RBURDEN	29.7 Feet	17. ELEVAT					E I		100×
			52.3 Feet	19. NAME (CTOR					100%
9. TOTAL DI	EPTH OF I	HOLE	82.0_Feet			K	ISER	<u> </u>			
ELEVATION 0	DEPTH	LEGEND _c	CLASSIFICATION OF MATERIAL (Description)	.s	мс	LL	PL	4	% SAND	-200	BLOWS
885.9	0.3	NS	NO SAMPLE-TOPSOIL SANDY LEAN CLAY WITH	GR AVE							1
	=		(CL), gr. br., m. pl., mst., si gravel, f. sand		16.4						2
884.7	1.5 =		graver, r. Sullu								4
11	-	CL	GRAVELLY LEAN CLAY WI SAND (CL), gr. br., m. pl., r								3
	_		subang. gravel, f. sand w/S SS frags.	H and	14.3						4
883.2	3.0		55 Hugs.								5
003.2	2.0		CLAYEY GRAVEL WITH SA								2
	=		l (GC), gr. br., m. pl., mst., s to_rou. gravel, c. to_f. san	ubang. d w/	i3.1						3
	-		alluvium		.5.1						
	=	GC	ar. low pl. w/SS from @]			7
			gr., low pl. w/SS frags. @ El. 881.6-El. 880.1		10.0	0.7	10				4
	_				12.9	27	19				4
880.2	6.0		POORLY GRADED GRAVEL	WITH		_					4_
		GP-	SAND AND SILI (GP-GM).	ar	6.2			61	20	14	26
879.0	7.2	ĞM	non pl., mst., subang. to a gravel, c: to f. sand w/wd.	'g. SS	6.2			61	28	11	40
878.7	7.5	NS	NO SAMPLE						-		50/.2
			SILTY GRAVEL WITH SAND (GM), gr., non pl., dry, subo	ing, to							7
		GM	ang. gravel, c. to f. sand wand SLS frags	1/55	8.3						7
877.2	9.0										12
	_		CLAYEY GRAVEL WITH SA (GC), gr. br., low pl., mst.,								4
		GC	to ang. gravel, f. sand		11.7	29	19				5
875.7	10.5										4
	=		GRAVELLY LEAN CLAY WI	TH				1			2
		CL	SAND (CL), gr. br., m. pl., r subang. gravel, f. sand w/S frags.	SS	17.4						3
874.2	12.0		393.					,			3
<u>0/4.Z</u>	12.0		CLAYEY GRAVEL WITH SA	ND				<u> </u>	-		3
	. =	GC	(GC), gr. br., low pl., mst., subang. to ang. gravel, c. t	o f.	17.0			30	21	49	16
0707		30	sand w/SS frags, and allu	vium	',.0			50	21	73	
872.7	13.5 <u> </u>		SILTY_CLAYEY SAND WITH	-						_	9
		sc-	SILTY CLAYEY SAND WITH GRAVEL (SC-SM), gr. & br. pl., mst., subang. to rou. gr	., low ravel. f.	17.0						1 -
	=	SC- SM	sand	,	13.2						5
871.2	15.0		GRAVELLY LEAN CLAY WI	TH	-						5
			SAND (CL), It. br., m. to lo mst., subong. gravel, f. san	w pl.							3
			frags.	U #/33	15.7						.3
869.7	16.5		LEAKI OLAV MINTO OLDE Z	ST-V							6
			LEAN CLAY WITH SAND (Com. pl., mst., f. sand	JL),							3
		CL			17.5	37	22				4
868.2	18.0 -							1			6
			SANDY LEAN CLAY WITH					1			4
	=		GRAVEL (CL), gr. br., m. pl subang. gravel, f. sand w/S	., mst., SH	16.2			1			5
000 7	10.5		GRAVELLY LEAN CLAY WI	ĨΗ	.5.2						
866.7	19.5 -		USAND (CL), ar. br., m. to lo	lla we	15 7						8
<u>866.2</u> _RH FOR	20.0 [—] M 18 36	<u> </u>	mst., subang. gravel w/wd. SH and SH frags.		15.7			<u> </u>	1,,0, ~		4
MAY 04	,000					ı ver Dai	m		HOLE	NO. C	-04-10

PROJECT	over Do	ım	INSTALLATION H	UNTINO	STON E	DISTRIC	 CT	- 1		2 SHEETS
ELEVATION	DEPTH	LECEND	CLASSIFICATION OF MATERIALS (Description)	мс	LL	PL		% SAND	./ -200	BLOV
865.2	21.0	С	GRAVELLY LEAN CLAY WITH SAND (CL), gr. br., m. to low pl., mst., subang. gravel w/wd. sandy SH frags.	15.7						4
	-	CL	SANDY LEAN CLAY WITH GRAVEL (CL), gr. br., m. pl., mst., subong. gravel, f. sand w/SH frags.	16.4	35	21				3 5
863.7	22.5 -		CLAYEY GRAVEL WITH SAND							6
200		GC	(GC), gr. br., m. to low pl., mst., subang. gravel, c. to f. sand w/ SS frags.	14.0			₹	6/7/0	<u>) 4</u>	5
862.2	24.0	GP- GM	POORLY GRADED GRAVEL WITH SAND AND SILT (GP-GM), gr. br., non pl., wet to ve. mst., subang. gravel, c. to f. sand w/ SS frags.	12.4						6
860.7	25.5 =	SM	SILTY SAND WITH GRAVEL (SM), gr. br., non pl., wet, subang, gravel, c. to f. sand w/SS frags.	15.2			25	54	21	6
859.2	27.0		LEAN CLAY WITH SAND (CL).							6
0577		CL	gr., low pl., mst., f. sand w/wd. SH frags.	12.6						9
857.7	28.5 <u> </u>	CL- ML	SILTY CLAY (CL-ML), gr., low pl., mst. w/wd. silty SH	11.5	_					19
856.5	29.7		LINESTONE: Complete Complete	REC	BOX OR		R	EMARKS		39 50/
			LIMESTONE: Gray, hard, fine to med. crystolline grained, thin to thick bedded, grades into underlying shale at 851.8, fossiliferous.	100% ROD 49% L 0.0	NO.	(Dr w	Illing time.	water loss etc If sign	, depth of alf logat)	ı
			Vertical fracture from 856.4 to 855.6.	100%	1					
	-	LS								
				RQD 82%						
851.9	34.3 _									
			SHALE: Dark gray to black, mod. hard, laminated, carbonaceous, fossiliferous in upper part.	,	2					
	=			L 0.0	1					
		SH		REC 100%						
	=				3					
848.0 \847.9 <i>[</i>	38.2 \38.3	\ C /	COAL: Black, low quality (shaley)/	RQD 67%						
			SHALE: Gray to dark gray, soft to mod. hard, laminated, silty.	6/%						
		SH								
845.2	41.0			L 0.0	4					
			SILTSTONE: Gray, mod. hard, silty to sandy, zones very sandy, thin to thick bedded.	REC 100%						
		SLS	Sandy zone from 842.1 to 840.0.	RQD 98%						
	44			L 0.0	5					
RH FOR		A	F	ROJECT	ver Da			HOLE	NO.	-04-

PROJECT	over Do	om		INSTALLATION	HUNTING	TON D	STRICT	SHEET 3
						BOX OR		OF 4 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF N (Description)	MATERIALS	RECOV-	SAMPLE NO.	(Drilling fime, weathering,	EMARKS water loss, depth of elc., if significant)
<u> </u>	ь	С	d					9
	=							
	_					5		
	_							
	_	SLS			REC 100%			
	=				100%			•
	_					6		
	=							
838.0	48.2							
	-		SANDSTONE WITH IN	TERBEDDED	RQD 100%			
	_		SANDS I ONE WITH IN SHALE: Sandstone is hard to hard, fine grained, thin to th micaeous, occasion stringers. Shale is hard, silty to sand thin bedded.	to medium				
			micaeous, occasion stringers. Shale is	noi shale gray, mod		_		
	_		hard, silty to sand thin bedded.	ly, laminated	·	7		
	-		Siltstone zone fro	m 835.1	L 0.0			
	_		to 834.1.		REC			
	=				100%			
	-							
	=	-				•		
	=	SS			RQD 90%	8		
	=							
	=							
	_							
	-				L 0.0			
					REC 100%			
					. 100%	9		
	=							
	_							
007.4					RQD 76%			
827.4	58.8		SANDSTONE: Gray be		76%			
	_		SANDSTONE: Gray, ho fine to medium g to thick bedded, r	rained, thin				
	_		snaley zones.					
	_		Shaley zone from to 820.8 and fr to 817.5.	821.0 om 817.9		10		
			to 817.5.		L 0.0			
	-	-			REC 100%			
	-	1						
	-	-						
	=				RQD 93%			
		SS				11		
	_	1				''		
	. –							
	-	1						
	-				L 0.0	\vdash		
	-	1			REC 100%			
			,			12		
						12		
	68 - M 1836-		<u> </u>		PROJECT			HOLE NO.

PROJECT D	over Do	ım	INSTALLATION	IUNTING	TON D	VICTOIOT	SHEET 4
_				z core	BOX OR	REMARKS	OF 4 SHEETS
ELEVATION	DEPTH	LEGEND c	CLASSIFICATION OF MATERIALS (Description) d	RECOV-	SAMPLE NO.	(Drilling time, water to weathering, etc if s.	ss, depth of ignificant)
817.6	68.6	SS					
	_		SANDSTONE: Light gray to gray, hard, medium to coarse	RQD 78%			
	_		aroined, thin to thick bedded.	/ 67.			
			micaeous, cross-bedded in zones with occasional		13		
	=		carbonaceous and coal stringers and laminations.				
	_		Clayey lamination (about one-sixteenth inch thick) at 812.9.	L 0.0			
	=			100%			
	-		Coaly and shaley zone from 806.8 to 806.4.				
	=		Shaley zone from 805.8 to 805.7.				
	_		Zone of numerous coal stringers from 804.6 to 804.1.	RQD			
	=		804.1.	84%	14		
	=						
	=						
		SS					
		1		L 0.0			
				REC 100%			
	_	1			15		
				RQD 86%			
						,	
	_	1					
				REC 100%			
	=	1		100%	16		
	_			ROD 60%			
804.2	82.0			L 0.0			
00+.2	-		BOTTOM OF HOLE @ 804.2	L 0.0			
	_					[
	=			1			
	-						
	=						
	-						
	-						
	=				.	,	
	=						
	-						
] =						
	-	1					
	92 -						
LRH FOR	M 1836	- A		PROJECT Do		l HOI	E NO.

	NG LO		eat Lakes and Ohio River	INSTALLATIO	CELR	H-EC-			OF		EETS
. project Dover <u>D</u> a	m			10. SIZE A		_			D 3" H		<u>W</u>
LOCATION	(Coordinate				/D 29					<i></i>	
N 326188 3. DRILLING		HC NU	2264.46 JTTING	12. MANUFA	ACTURER'S	S DESIGNA	ATION OF	DRILL	, CV	ME 45	
I. HOLE NO.	(As shown mber)				SAMPLE:	S TAKEN	<u>:</u>	JR8ED	12 : UN	IDISTURB	ED O
, NAME OF	DRILLER	DDAC		14. TOTAL							
6. DIRECTION	OF HOLE	BRAG		15. ELEVAT			RTED	8.4	·COMPL	ETED	
X VERTI	CAL 🗌 IN	CLINED	ODEG. FROM VERT.	17. ELEVAT			6/6/0			6/6/0	4
7. THICKNES	S OF OVE	RBURDEN	19.0 Feet	18. TOTAL							100 %
B. DEPTH DE				19. NAME (OF INSPEC						
ELEVATION	DEPTH	LEGEND	29.3 Feet CLASSIFICATION OF MATERIAL (Description)	.s	мс	LL	SER PL	Х	% SAND	Х -200	BLOWS
901.4	0.4 -	NS	NO SAMPLE-TOPSOIL		_				3210	200	1
301.4	U, T		SANDY LEAN CLAY WITH								
			(CL), br., low pl., mst. to c subang. gravel, f. sand	ıгу,	12.6						4
900.3	1.5		SANDY LEAN CLAY (CL),	or							4
			m. pl., mst., f. sand		45.0]		4
	Ξ	CL			15.6						4
898.8	3.0 -		CANDY LEAN OLAY WITTE	CDAVE							6
			SANDY LEAN CLAY WITH (CL), gr. br., m. pl., mst., si	ubang.							4
			gravel, f. sand w/tr. wood	irags.	15.7			19	21	60	.6
897.3	4.5										6
			CLAYEY GRAVEL WITH SA (GC), br., m. pl., mst., subo								3
		GC	rou. gravel, c. to f. sand	3	14.3	32	20				3
895.8	6.0										5
	-		GRAVELLY LEAN CLAY WI SAND (CL), gr. br., m. to 14								3
	=		mst., subang. gravel, f. san SH frags.		16.4			25	24	51	3
804.7	7 -		on nogs.,								3
894.3	7.5 ~		SANDY LEAN CLAY WITH		-						3
			(CL), gr. br., m. to low pl., subang. to rou. gravel, f. s	mst.,	17.9						
	_		, , , , , ,		17.9						3
892.8	9.0 -		SANDY LEAN CLAY (CL),	or							4
		CL	m. pl., mst., f. sand		10.7			4.0	7.0		3
					19.7	.		11	36	53	3
891.3	10.5		CDAVELLY LEAST OF AV W	ITU							3
			GRAVELLY LEAN CLAY W SAND (CL), gr. br., m. pl.,	HT (00							2
	=	1	SAND (CL), gr. br., m. pl., mst., subang. gravel, f. sar and SH frags.	u w/55	13.7	30	21			1	5
889.8	12.0										5
	=	1	SANDY LEAN CLAY WITH (CL), gr. br., m. pl., mst., s	GRAVEL ubang.]	3
		1	gravel, f. sand	- ,	14.5						3
888.3	13.5 -		·						6/6/0)4	5
	=		(SC), gr. br., m. pl., mst., s	/EL ubana.					l	ŀ	2
	=	sc	gravel, f. sand		9.8	29	18				3
886.8	15.0	1									3
<u> </u>	-	1	SILTY CLAYEY SAND WIT	H				_			3
		SC- SM	GRAVEL (SC-SM), low pl., subang. gravel, c. to f. sar		12.4			40	40	20	3
005.3	10.5	SM	SS frågs.								3
885.3	16.5 -	_	SILTY CLAYEY GRAVEL V	NTH -	 				-		
	_]	SAND (GC-GM), low pl., ms subang. gravel, c. to f. sar	st.,				ĺ			3
	=	GC-	SS and SLS frags.		11.0						15
		ĞМ			11.0						3
882.9	18.9	1	}								3
882.8	19.0	NS	VNO_RECOVERY								50/.4 50/.1
		LS	LIMESTONE: Gray, hard, fir med. crystalline grained	ne to		BOX OR SAMPLE	(D)	Filling time	REMARKS , water loss etc., If sign	s, depth of	
	_	LS	fossiliferous.	•	ERY	NO.		veathering.	etc. If sign	nif loant)	
RH FOR	M 18.36				PROJEC	it ver Dai			HOLE		-04-11

B-LB0001.dgn 11/2/2006 10:19:36 AM

PROJECT	over Da		INSTALLATION			ICTRICT	SHEET 2
	over Do	m	н	Т	TON DI	ISTRICT	OF 2 SHEETS
ELEVATION	DEPTH 6	LEGEND c	CLASSIFICATION OF MATERIALS (Description) d	Z CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Drilling Ilme, wate weathering, etc 9	ar loss, depth of If significant)
881.3	20.5	· LS	60° Fracture from 882.8 to 882.3.	REC 100%			
880.6	21.2	С	COAL: Black, vitreous, shaley zone from 881.0 to 880.8				
000.0				RQD 22%	1		•
			SHALE: Gray, soft to mod. hard, silty to clayey, laminated, grodes into silty to sandy shale below 877.1.	L 0.0			
			Vertical fracture from 876.8	REC 100%			
		SH	to 876.3.	100%			
	=						
					2		
877.1	24.7			ROD			
			SHALE: Gray, mod. hard, silty to sandy, zones very sandy, occasional siderite nodules below 874.8.	OX			
	-		Near vertical fracture from 875.2 to 874.8.				
		CLI	Iron stained zone from 874.8 to 873.3.	L 0.0			
		SH	Weathered and water stained near vertical fracture from 874.6 to 873.3.	REC 100%	3		
			8/4.6 to 8/3.3. Vertical fracture from 873.2 to 872.9.	RQD 19%			
872.5	29.3			L 0.0			
			BOTTOM OF HOLE @ 872.5		1		
	=						
				1			
	=				i l		
	=						
	_						
	=						
	_						
	=						
	=						
	=						
	-						
	_=						•
	_						
	-						
	_						
	-						
	_						
	44 =						
LRH FOR		_	l	PROJECT Do			HOLE NO.

DRILLI	NG LO		ISION eat Lakes and Ohio River	INSTALLATI		H-EC-				EET 1	
1. PROJECT			23.00 3.10 1.1701	10. SIZE A				RE AN			HEETS W
Dover Da		0 no C1-11		10. SIZE AND TYPE OF BIT 4" CORE AND 3" HOLLOW 11. DATUM FOR ELEVATION SHOWN (TBM or MSL)							
2. LOCATION N 32627			ນ 2355.30	NG\	VD 29	DEELO	ATION CO	DD# :			
3. DRILLING		HC NL		iz. MANUF	MUTURER"	DESIGN	ATION OF	DHILL	CI	ME 45	
4. HOLE NO.	. (As shown		////e	13. TOTAL BURDEN	NO. OF C	VER-	DIST		11	DISTURB	ED O
and file nu	imber)		: C-04-12	14. TOTAL			xes 3				
5. NAME OF	DRICLER			15. ELEVAT	_			7.2			
6. DIRECTION			0	16. DATE H	HOLE	STA	RTED 6/14/	′∩4	COMP	ETED 6/14/	04
			ODEG. FROM VERT.	17. ELEVAT	TION TOP	OF HOLI			T	07_147	04
			23.7 Feet	18. TOTAL	CORE RE	COVERY	FOR BO	RING			100 ×
9. TOTAL DE			10.6 Feet 34.3 Feet	19. NAME (OF INSPEC	CTOR					
			CLASSIFICATION OF MATERIAL					,	, x		_
ELEVATION	DEPTH 6	LEGEND	(Description)	.5	MC	LL	PL	У. • 4	SAND	-200	BLOWS
_			GRAVELLY SILTY CLAY W	ПТН	_			30	19	51	2
901.1	0.6		SAND (CL-ML), gr. br., low ve. mst., subong. to rou. gr sand w/tr. rts., SH frags.	p≀., ravel, f.,							
		CL-	sand_w/tr.rts., SH_frags. brg.odor	and							4
	_	ML.	SANDY SILTY CLAY WITH								4
			SANDY SILTY CLAY WITH GRAVEL (CL-ML), gr. br., lo mst., subang. gravel, f. san	d pi.,	14.5						11
	=										7
898.7	3.0										5
	-		SANDY LEAN CLAY WITH GRAVEL (CL), gr. br., m. pl						[3
	=		i mst., subana, aravel, t. san	ď							3
	_		w/chemical odor	-] .						
	=	CL			15.3	33	21				8
	_										2
	=										3
895.7	6.0 -								ĺ		56
	=		SILTY CLAYEY GRAVEL W SAND (GC-GM), low pl., ms	1TH t							73
	=		subang, to ang. gravel, f. s w/SLS frags.	and					1		8
		GC-	ozo w ogo								57
	_	ĞM			10.7						7
	=										6
	_ =										
892.7	9.0 -		SANDY LEAN CLAY WITH						-	-	3
	=		GRAVEL (CL), gr. br., m. pl mst., subang. gravel, f. san	7						,	2
			mat., subung. graver, r. sun	J							3
	_				15.8			20	29	51	3
					,0.0			20	23))	2
	=						,				2
	=										2
	=	CL	low pl. @ El. 889.7-El. 886	.7							2
	-]									2
	-										
	=				16.9	30	21	20	29	51	3
	-	1				,					7
	=]									3
886.7	15.0 -										4
	=		SILTY CLAYEY SAND WITH GRAVEL (SC-SM), gr. br., I	H ow ol							3
	=	1	mst., subang. to rou. grave f. sand w/SS frags.	el, c. to]	5
	-	SC- SM	1, 3010 W/ 33 11 Ugs.		12.9	[29	39	32	5
	-	5M						1 23	33	32	
	-	}									4
	149		FAT CLAY (CH), dk. gr., hi	-1	ļ						3
884.2	17.5 _		TEAL FLAY (CH: dv or hi	, pl.,	1	}			1		3
884.2	1/.5 =		mst. w/SH frags.					l	1	l	
884.2	17.5 =		mst. w/SH frags.								2
884.2	17.5 -	СН	mst. w/SH frags.		23.4	. 51	27		`		2 9
	-	СН	mst. w/SH frags.		23.4	. 51	27				
884.2 882.2 881.7	19.5	СН	FAT CLAY (CH), dk. gr., hi	. pl.,	23.4	. 51	27				9

DRILLING	LOG	Cont S	heet)	ELEVATION TOP	OF HOLE 90	D1.71			H	ole No			2
	over Do	m					JNTING	TON	ISTRIC	T			SHEETS
ELEVATION	DEPTH	LEGEND		CLASSIFICATION (Descrip	OF MATERIALS		мс	ιι	PL	% •4	% SAND	-200	BLOWS
881.5	20.2 -	CH_	I\ve. n	CLAY (CH),		/	31.1						4
			SILT'	Y CLAY (CLast to dry w	-ML), It. gr., /wd. silty S	low H							10
	=	_					9.5						9
		CL- ML											29 25
	=												18
878.0	23.7						9.6	-					40 50/.2
			SHAL	.E: Gray, sof	t to mod. h	ard,	RECOV-		(Dr	RE Illing time, reathering, e	EMARKS water loss	i, depth of	507.2
	=		st we	E: Gray, sof ty to shaley aining along eathered at t	beddingt pla op.	nes,	REC 100%	NO.	,		6/14		
			Ne 8	ear vertical fr 371.4 to 870	acture from	n	RQD 0%						
			Hi	ahlv fracture	d and iron		L 0.0	1					
				stained zone 370.9 to 870		-	REC 100%						
		SH		lty from 87)° Fracture		.5.							
							RQD 0%						
	=					•							
	=						L 0.0	2					
	=						REC 100%						
870.9	30.8						1007						
870.9	30.8		SHAL	E: Gray, mo ty to sandy.	d. hard,								
	=			ty to suridy.			RQD 27%						
		CII					27%	3					
	_	SH											
	=												
867.4	34.3 -		BC	OTTOM OF H	OLF @ 867		L 0.0						
	_			71 70 W 01 11	000	1							
	=												
	_												
	=												
	_=												
	=												
	=												
	=	1											
	=											•	
	44 -												
LRH FOR	м 1836-	- A				ŀ	PROJECT	ver Do	m		HOLE	NO.	-04-12

	DRILLI	NG LO		sion eat Lakes and Ohio River	INSTALLATIO		H-EC-			Si	KEET 1		
	1. PROJECT			cat Eakes and Onio River	10. SIZE A				RE AN	OF D 3''	5 si HOLLO	W W	
	2. LOCATION	(Coordinate			11. DATUM NG\	FOR ELE	VATION	SHOWN	TE	BM or A	(SL)		
	3. DRILLING		23023 HC NU		12. MANUF	ACTURER"	S -DESIGN	ATION O	F DRILL	CI	ME 45		
	4. HOLE NO.	. (As shown			13. TOTAL BURDEN	NO. OF (DIST	URBED	7 :	NDISTURB	ED O	
	5. NAME OF		BRAG		14. TOTAL 15. ELEVAT								
	6. DIRECTION				16. DATE H			RTED 5/25		COMP	ETED 6/2/0		
				16.9 Feet	17. ELEVA			E 934	.03 F	eet	0/2/0		
	8. DEPTH DE	RILLED INT	O ROCK (82.0 Feet	18. TOTAL		CTOR				_	100×	
	9. TOTAL DE			98.9 Feet CLASSIFICATION OF MATERIAL			S	TEWAR	ξT	Z	Z	-	
	ELEVATION .	DEPTH	LEGEND	(Description)		MC	LL	PL	•4	SAND	-200	BLOWS	
				CLAYEY SAND WITH GRAV (SC), gr., m. pl., mst., subar gravel, c. to f. sand w/woo	na.							3	
				frags.	50							3	Ē-
			SC			33.5	39	28				5	
												4	
	931.0	3.0										7	
		=		SILTY CLAYEY SAND WITH GRAVEL (SC-SM), gr. br., Id mst., subang. to rou. grave	ow pl.,			,				4	<u> </u>
				f. sand	51, C. (O				1			7	_
		=	SC- SM			9.5			35	39	26	8	
												6	
	928.0	6.0			<u></u>							5	Ē
				GRAVELLY SILTY CLAY W SAND (CL-ML), gr. br., low mst., subang. gravel, f. san wood frags.	pl.,							4	
		_		wood frags.	u #7 (i .							7	
						12.9						8	_
												3	
		-										4	_
		_		no wood frags. © El. 925.(El. 920.0)-							2	=
												2	
						17.3	35	22				2	_
			CL-									1	
		-	ML									3	_
		-		ve. mst. @ Ei. 922.0-Ei. 92	0.0				1			1	
						20.8						2	
									7	6/1/0	<u>4</u>	3	
	920.0	14.0		GRAVELLY SILTY CLAY (C	CL-ML1						_	4	<u> </u>
				gr., low pl., dry, ang. grave silty SH	Iw/wd.							17	
						4.6						25 18	_
												50	
									}			27	
	917.1	16.9		CHAIE: Deals and 1	h c:41	4.2	DO::					50/.4	
	916.4	17.6	SH	SHALE: Dark gray to blac to mod. hard, silty, lamin	k, soft nated.	% CORE RECOV- ERY		1Dr	illing fime,	EMARKS water loss etc. If sign	depth of difficant)		_
	916.1	17.9 _	С	BONE COAL: Black SANDSTONE: Gray, hard, m	ned.	REC				9		ļ	_
				to coarse grained, mica cross-bedded in thin to	thick	100% RQD 99%	1					-	
			SS	beds. Iron stained zone from	902.3	L 0.0 REC						ļ	
				Iron stained zone from to 900.9.		100%							_
	LRH FORM					PROJEC	r ver Dar	m		HOLE		-04-13	
B-LB0	001.dgn 1	1/2/2006	3 10:20:	41 AM							~	0	

PROJECT D	over Do	ver Dam HUN				ISTRICT SHEET 2 of 5 sheets		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE	BOX OR SAMPLE	REMARKS (Drilling time, water lass, depth of weathering, etc. If significant)		
	ь	¢	ď	ERY	NO.	9		
			SANDSTONE continued:	ROD				
	=			RQD 92%				
	=		Vertical fracture from 892.0 to 890.7.		2			
	=		Iron stained zone from 893.0					
	=		to 889.7.					
			Vertical fracture from 890.5 to 889.7.					
			(6 666.7)	L 0.0				
				REC 100%				
	=			100%				
	=					•		
	=				3			
]		•					
				POD		•		
	=		·	RQD 93%				
					\vdash			
	=							
] _							
				L 0.0	4			
				REC 100%				
	3			100%				
	=							
	=	SS		RQD				
				100%	_			
					5			
						•		
				L 0.0				
				REC 100%				
				100%				
					6			
				RQD				
	=			RQD 100%				
	=							
				L 0.0				
				L 0.0 REC 100%	7			
]							
				ROD 62%				
				"				
	=							
	7				8			
	44 =			L 0.0				
RH FOR	11076			PROJECT Dov		HOLE NO.		

PROJECT	over Do	Cont S	heet) 100 or NOLE 934.03		TON DI	Hole No. (SHEET 3
				Г	BOX OR		OF 5 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	RECOV-	SAMPLE NO.	REMAR (Drilling time, water weathering, etc., if	loss, depth of significant)
889.7	44.3 -	SS	d	REC		9	·
] =		SHALE: Dark gray, mod. hard, lominated, scattered siderite	100%			
			nodules.				
	_						
				ROD	9		
	-	SH		RQD 52%			
] _=					•	
885.0	49.0			L 0.0 REC			
	=		LIMESTONE: Gray, hard, fine to medium crystalline	100%			
		LS	grained, fossiliferous, thin bedded.		10		
	=		, , , , , , , , , , , , , , , , , , ,				
883.0	51.0						
000.0		С	COAL: Black, vitreous, interbedded with very few shale	ROD 78%			
882.2	51.8		laminations.	-			
		SS	Healed vertical fracture from 883.9 to 883.0				
880.8	53.2		SANDSTONE: Light gray, mod. hard to hard, very fine grained, fossiliferous, silty.		11		
	=		1 \	L 0.0			
		SH	Black in color from 882.2 to 884.2.	REC			
879.4	54.6		$\sqrt{30^{\circ}}$ Fracture at 880.6.	100%			
			SHALE: Gray mod hard sitty				
			SHALE: Gray, mod. hard, silty, thin to thick bedded, occasional carbonaceous				
		SH/SS	\ shale stringers. /	RQD	12		
] =	317 33	30° Fracture at 878.2.	100%	12		
			INTERBEDDED SANDSTONE AND				
876.1	57.9 -		INTERBEDDED SANDSTONE AND SHALE: Light gray (SS), dark gray (SH), mod. hard to hard.				
			SHALE: Dark gray, mod. hord				
] _=			L 0.0			
	=		•	REC 100%			
					13		
			et.				
				BOD			
	=			RQD 100%			
	_=			1			
	=						
	_	SH					
				L 0.0	14		
				REC 100%			
				100%			
	=						
				RQD 100%			
	=			100%	15		
	68						
RH FOR		Α		PROJECT	ver Dam	н	LE NO.

PROJECT D	over Da	m	INSTALLATION	HUNTING	TON DIS	STRICT OF 5 SHEET
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time water loss, depth of weathering, etc., if significant)
0	b ~	c	d	•		9
				L 0.0		
				REC 100%		
					16	
				RQD 100%		
		SH		L 0.0 REC	17	
				100%		
				RQD		
				100%		
	=				18	
855.0	79.0			L 0.0 REC		
	\exists		LIMESTONE: Gray, hard, fine to med. crystalline grained, thick bedded grading into underlyin shale at 849.5, fossiliferous.	100%		
	=		bedded grading into underlyin shale at 849.5, fossiliferous.	9		•
				200	19	
		LS		RQD 90%		
	=			L 0.0		
849.5	84.5		5//1/5	REC 100%	20	
			SHALE: Dark gray to black, mod. hard, silty, laminated, carbonaceous, fossiliferous in upper part.			
	=		in upper part.			
	=			RQD		
	=	Cti		96%		
		SH				
					21	
	=				21	
044.				L 0.0		
844.7 844.4	89.3 -	_C	COAL: Black, vitreous.	REC 100%		
			SHALE: Gray, mod. hard, silty, thin to thick bedded.	_]·		
			timi to thick bedded.			
		SH		BOD	22	
				RQD 80%		
RH FORI	92 -			PROJECT		HOLE NO.

DRILLING PROJECT			INSTALLATION		TON D	Hole No. C-04-13
	over Do	ıu			TON DI	OF J SHEET
ELEVATION	DEPTH	LEGENO	CLASSIFICATION OF MATERIALS (Description)	RECOV-	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
0	6	с	d	ERY	NO.	9
] =					
		SH				
				REC 100%	23	
839.5	94.5			100%		
			SANDSTONE: Gray, mod. hard to hard, very fine grained, micaceous, shaley.			
			micaceous, shaley.	1		
				RQD 100%		•
		SS				
					24	
835.1	98.9		BOTTOM OF HOLE @ 835.1	L 0.0		
			BUTTOM OF HULE & 835.1			
	=					
	=					
	~					
					.	
	=					
	=	.				
	=					
	-					
	=					
			•			
	_					
		[
	-					
	=					
RH FOR	116 -	Δ		200 1502		F
RH FORI	W 1000°	<i>(</i>)		DOV	ver Dam	HOLE NO.

	NG LOC		sion eat Lakes and Ohio River	INSTALLATIO	CELR	H-EC-(SE	OF	5 SH	
1. PROJECT Dover Da	<u>m</u>			10. SIZE AN					0 3" F		<u> </u>
2. LOCATION N 326162			396.76	NGV	D 29						
3. DRILLING	ACCNICY	HC NU		12. MANUFA	TURER'S	DESIGNA	ATION OF	DRILL	CN	4E 45	
4. HOLE NO.	(As shown o		fitte :	13. TOTAL I	O. OF O		DISTU		3 : .	DISTURB	ED O
5. NAME OF			: C-04-14	14. TOTAL	NUMBER	CORE BO	xes 25	5			
6. DIRECTION	OF HOLE	BRAG	G	15. ELEVATI	_		R 918	3.1	COMPL	EYED	
			ODEG. FROM VERT.	16. DATE H			5/23/			5/24/	/04
7. THICKNES	S OF OVER	RBURDEN	18.3 Feet	17. ELEVAT					et		100 %
8. DEPTH DE			32.8 Feet	19. NAME O	F INSPEC		EWAR	т т			
ELEVATION	DEPTH	LEGEND	101.1 Feet CLASSIFICATION OF MATERIAL	.s	MC	LL	PL	у.	Z.	Z	BLOWS
0	ь	c	(Description) d GRAVELLY LEAN CLAY WI	TU	- MC	-		-4	SAND	-200	
	=		SAND (CL), gr., m. to low mst., subang. to ang. grave	ol l			- 1				2
	4		f. sand w/flint and coal fra	gs.	.]						2
	\exists	CL						30	19	51	2
											3
	=										5
930.9	3.0		CLAYEY GRAVEL WITH SA	ND -						_	12
	=		(GC), gr. br., m. pl., mst., si gravel, c. to f. sand								5
	=		3 5.1., 5. (5 55.)								10
		GC			9.3	32	21				10
											4
											4
927.9	6.0		CLAYEY SAND WITH GRAV								5
	=		(SC), gr. and br., m. pl., ms subang. to rou. gravel, c. t	st.,							2
			sand								'
	=	SC			17.2			19	33	48	2
											3
00											4
924.9	9.0 -		LEAN CLAY WITH GRAVEL								1
	=		gr., m. pl., mst., subang. gr	avel							3
											4
					19.5	35	23				2
		CL									2
											3
			SH and SS frags. © El. 92 El. 920.9	21.9-	45 -						2
920.9	13.0		ÇI. 920.9		15.9				[2
320.3	19.0		SILTY CLAY (CL-ML), gr., low pl., dry w/wd. silty SH						1		18
	=		Ton pill of y w/ wu. Silty Sil		6.0						6
	=				6.9						15
918.9	15.0										16
] =	01	SILTY CLAY WITH GRAVE	L subana.							19
	-	CL- ML	(CL-ML), gr., low pl., dry, s gravel w/wd. SH					₹.	5/24	<u>/04</u>	25
	=								l	1	44
	=				5.1						15
											26
915.9	18.0		A FANL CLAY (CL)								42
915.6	18.3 -	CL	LEAN CLAY (CL), low pl., dry w/wd. silty SH		9.6						50/.
915.0	18.9	SH	SHALE: Dark gray to blac to mod. hard, silty, lami	ck, soft nated.	RECOV-		(Dr	R Illing time.	EMARKS , water los: etc., If slg	s, depth of	
914.7	19.2	С	BONE COAL: Black		ERY	NO.	"	ouriering,	g Sig	iwi iQant)	
	=	SS	SANDSTONE: (description following page)	Oli	REC 100%	1					
	M 1836				PROJEC	T			HOLE	110	

PROJECT D	over Do	ım	INSTALLATION H	UNTING	ח אסד	ISTRICT OF 5 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Oescription)	% CORE	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
a	ь	c	d	•		9
	_		SANDSTONE: Ligth gray and gray, hard, med. to coarse grained, micaceous, cross-bedded in thin to thick beds.	RQD 30%	1	
			micaceous, cross-bedded in	L 0.0		
	=		Vertical fracture from 913.9	REC 100%		
	_		to 912.9.	100%		
	=		45° Fracture at 912.0.			
			45° Fracture at 910.9,		2	
	· =		Occasional coal stringers from 909.9 to 907.2.	500	2	
	_		30° Fracture at 907.1.	ROD 85%		
	=					
	_					
	=					
				L 0.0		
	_			REC 100%		
				.50%	3	•
	_			205		
				RQD 98%		
						•
	_				4	
				L 0.0		
				REC 100%		
	_	SS		100%		
	_				5	
	_			RQD 100%		
	=					
	_					
	_			٤ 0.0		
				REC 100%		
				100%	6	
					"	
	=]				
] =	-		RQD 100%		
	=					
	=	-				
	_	1			7	
					1 1	
	=		,	L 0.0		
		1		REC 100%		
				RQD 94%	8	
	44 -					
LRH FOR	м 1836-	· A	ı	PROJECT	ver Dar	HOLE NO. C-04-

PROJECT	LOG	(Cont SI	heet) ELEVATION TOP OF HOLE 933.94			Hole No. C-04-14
	over Do	ım		UNTING	TON	DISTRICT OF 5 SHEETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
889.7	144.21	SS /	d	·	,	9
	-		SHALE: Dark gray, mod. hard, laminated, silty.			
	_		45° Fracture at 889.3.		8	
	_		45° Fracture at 887.0.			
	_		Slickensided at 885.6.	L 0.0		,
	_		Vertical fracture and siderite	REC 100%]	
	_		from 884.6 to 884.3.	100%		
	_	SH	Carbonaceous and fossiliferous zone from 884.3 to 883.2.		9	
					3	
	_		·	RQD		
	_	}		82%		
	=			1		
	_					
883.2	50.7 -					
			LIMESTONE: Gray to dark gray, hard, fine to med crystalline	L 0.0	10	
0001		LS	grainea, tossiliterous, thin	REC	1	
882.1	51.8 -		Godl: Black, vitreous, pyritic.	100%		
004 4	-	С				
881.1	52.8 -		SANDSTONE: Light gray mod	-		
	=	SS	SANDSTONE: Light gray, mod. hard to hard, very fine grained, silty.			
879.8	54.1		g. 3.1100, 3.10y.	RQD 72%		
			SHALE: Gray, mod. hard, laminated.]	11	
	_		45° Fracture at 879.1.			
	-	SH	+3 Fracture at 879.1.			
877.8	56.1			L 0.0		·
			INTERBEDDED SANDSTONE AND	REC		
			SHALE: Light gray (SS), dark gray (SH), mod. hard to hard.	100%		
	-		60° Fracture from 859.6 to 859.0.		1	
	_	SH/SS			12	
] =	-		RQD 100%		
				100%		
	=					
874.0	59.9 -		SHALE: Dork arous mod hord	-		
			SHALE: Dark gray, mod. hard. Effervescent from 874.9			
	_	-	to 854.0.	L 0.0	-	
				REC 100%	1	
	-				13	
	-		,			
		-				
	-	1		RQD 100%		
	=	SH		100%		
	-]				
] _=					
	. =	1			14	
	_=	}	`	L 0.0		
	=	1		REC 100%		
	_=].		.55%		1
	_	-			15	
	68]			13	
LRH FOR	м 1836	- A		PROJECT	ver Do	m HOLE NO.

B-LB0001.dgn 10/24/2006 12:21:54 PM

PROJECT	over Da	m	INSTALLATION	LI INITINIC		STRICT SHEET 4
	0 7 61 00		χ.	HUNTING		JOF 3 SHEETS
ELEVATION 0	OEPTH 6	LEGEND	CLASSIFICATION OF MATERIALS (Description)	RECOV-	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
				<u> </u>		
	_			RQD 100%		
	=		-		15	
	=			L 0.0		
				REC 100%		
	=			100%	16	
					16	
	=					
	_			RQD		
		SH		88%		
	=					
	E					
	=				17	
	=			L 0.0		
				REC 100%		
]					
				RQD 92%	18	
				927.		
854.0	79.9					
	7 3:3		LIMESTONE: Gray, hard, fine to			
			LIMESTONE: Gray, hard, fine to med. crystalline grained, thick bedded, fossiliferous.	L 0.0		
				REC		
	=			100%	19	
		LS				
	=		_	RQD		
				86%		
_						
848.5	85.4		SHALE: Dock or on to block	-	20	
			SHALE: Dark gray to black, mod. hard, laminated, carbonaceous, fossiliferous in upper part.	REC		
				REC 100%		
	=		35° Fracture with slight slickensides at 848.4.			
	=	SH	Slickensided at 845.6.			
	=		45° Fracture at 845.5.	500		
				RQD 68%	21	
					21	
844.2 843.9	89.7 - 90.0 -		COAL Plant when are	⊣ ∣		•
643.9	90.0	С	COAL: Black, vitreous. SHALE: Gray, mod. hard, silty, laminated.			
	=	SH	45° Fracture with slickensides at 843.8.	L 0.0		
			(Continued or following page)	REC 100%	22	
RH FORI	92 ~			PROJECT		

DRILLING			heet) ELEVATION TOP OF HOLE 933.			Hole No. C-04-14
D	over Do	m m	·	HUNTING	TON DI	ISTRICT OF 5 SHEETS
ELEVATION 0	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description) d	% CORE RECOV- ERY	SAMPLE NO.	REMARKS (Drilling itims, water loss, depth of weathering, etc., if significant)
		-	SHALE continued:			
	=				22	
	=		60° Fracture with slickensides from 842.9 to 842.4.	RQD 74%		
	-	SH	45° Fracture with slight slickensides at 841.9.			
	_		45° Fracture at 840.3.			
0.70.7	05.0					
838.3	95.6 -		SANDSTONE: Gray, hard, fine grained, micaceous, shaley.	L 0.0	23	
	=			REC 100%		
	_		Silty zone from 838.3 to 836.7.			
] =		Silty zone from 834.0 to 833.0			
	-	SS		RQD	[]	
	=			100%	24	
	=					
833.0	100.9			L 0.0	25	
855.0	100.5		BOTTOM OF HOLE @ 833.0			
	-					
	=					
	-					
			,			
	=					
	=					
	_					
	=					
	-					
] =					
	-					
	=	}			[
	-]				
	=					
	-	4				
	=					
	=					
,	-	1				
	=	1				
] =					
	=					
	[=					
LRH FOR	116 - M 1836	- A		PROJECT		HOLE NO.
MAY 04 001.dgn 1				Do	ver Da	m C-04-

EXHIBIT II-5

OVERBURDEN SECTIONS

EXHIBIT II-6

ROCK LABORATORY TEST DATA

	Cross Bed Shear	Shear Parallel to Bedding	Basic phi angle	Bedrock Dam Interface		E t50	Unit
	Intact Peak	Natural Fracture Peak	Smooth Sawn Surface	Grout on Rock Peak	AllowableBearing	Elastic	Weight
	((\$)	(\$)	(\$)	isd	Modulus	
	(c)psi	(c) psi	(c) psi	(c) psi		(x10 ⁴ 6)	
	99	39	29	90	2191		168.5
Limestone	150 psi***	7 psi	0 psi	33 psi***		24.740	bct
	64	28	26	50	522		148
Upper Sandstone	88 psi***	3 psi	0 psi	70 psi***		2.050	pcf
	46	26	21	50	829		159.7
Sandy Siltstone	20 psi***	2 psi	0 psi	60 psi***		2.970	pcf
	31	25	14	31	873		165.8
Siltstone	15 psi***	1.5 psi	0 psi	60 psi****		2.750	pcf
	29	19	12.5	30	300		161.5
Shale	5 psi***	.5 psi	0 psi	50 psi***		1.750	bct
	19*						
Fault/Slickensided Joint*	0 psi						
		38		٠			
Concrete Key Lift Joint**		Controlled by Rebar**					

Shear Parallel to Bedding when used with the key should be reduced by 50% due to strain incompatibility with the rebar

*The cross bed shear strength assigned to the (Fault / Slickensided Joint) is the average of the basic phi angle for all of the materials except the Upper Sandstone.

The Upper Sandstone was excluded because it is not a component in the passive wedge of the 3 monoliths analyzed. **The cohesion value used in the concrete key is assigned by structural section and is not published here.

The cross bed shear cohesion was taken directly from the intact peak lower bound plot except cohesion was then reduced by 50 percent to account for scaling effects. *The cohesion was taken directly from the lower bound plot of the grout on rock peak except cohesion was reduced by

66 percent to represent portions in the monolith where the contact is not bonded.

DOVERSHALEINTACT.xls

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Limestone

	•				Peak	Post Peak
FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Shear Stress (psi)	Shear Stress (psi)
DS-103	1	C-04-03	82.7	40.0 80.0 120.0	1,224.4	32.2 ⁽¹⁾ 74.5 109.9
DS-104	2	C-04-03	85.1	80.0 40.0 120.0	1,120.2	99.5 41.8 128.5
DS-105	3	C-04-06	51.7	120.0 40.0 80.0	1,991.0	58.4 ⁽¹⁾ 15.4 29.7
DS-106	4	C-04-06	52.3	40.0 80.0 120.0	1,513.2	22.0 ⁽¹⁾ 55.4 83.5
DS-107	5	C-04-06	53.0	80.0 40.0 120.0	1,860.6	81.8 ⁽¹⁾ 39.1 113.9
DS-108	6	C-04-05A	54.2	120.0 40.0 80.0	1,351.1	122.1 41.1 82.8
DS-109	7	C-04-13	50.3	40.0 80.0 120.0	186.0	54.3 77.6 100.2
DS-110	8	C-04-09	31.2	80.0 40.0 120.0	1,298.8	30.0 ⁽¹⁾ 18.0 50.3
DS-111	9	C-04-09	34.3	120.0 40.0 80.0	546.8	140.1 50.3 84.9

Note(s): (1). Shear plane extended in Hydro-stone encasement and additional preparation was performed prior to additional shearing.

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Upper Sandstone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DS-76	1	C-04-01	13.5	40.0 80.0 120.0	272.1	15.2 ⁽¹⁾ 30.9 47.9
DS-77	2	C-04-01	14.2	80.0 40.0 120.0	354.3	79.4 35.5 112.7
DS-78	3	C-04-01	16.1	120.0 40.0 80.0	574.1	99.5 40.0 64.0
DS-79	4	C-04-01	43.1	40.0 80.0 120.0	365.2	42.5 67.5 91.0
DS-80	5	C-04-01	45.3	80.0 40.0 120.0	372.7	78.5 28.6 93.2
DS-81	6	C-04-14	32.1	120.0 40.0 80.0	461.9	130.6 42.3 76.8
DS-82	7 .	C-04-14	35.9	40.0 80.0 120.0	271.0	55.1 63.5 ⁽²⁾ 85.5
DS-83	8	C-04-14	38.5	80.0 40.0 120.0	325.2	117.0 47.0 129.8
DS-84	9	C-04-13	41.2	120.0 40.0 80.0	429.7	109.2 35.9 70.4

Note(s): (1). Shear plane extended in Hydro-stone encasement and additional preparation was performed prior to additional shearing.

^{(2).} Equipment malfunction caused premature termination of second test.

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Siltstone / Sandy

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DS-85	1	C-04-06	59.2	40.0 80.0 120.0	96.4	38.5 71.9 92.5
DS-86	2	C-04-06	63.1	80.0 40.0 120.0	189.2	47.0 26.8 67.3
DS-87	3	C-04-06	70.7	120.0 40.0 80.0	100.4	67.0 25.3 44.0
DS-88	4	C-04-06	90.5	40.0 80.0 120.0	287.5	38.0 67.5 90.0
DS-89	5	C-04-06	98.3	80.0 40.0 120.0	506.2	139.9 N/A ⁽¹⁾ N/A ⁽¹⁾
DS-90	6	C-04-09	52.8	120.0 40.0 80.0	243.1	77.6 24.7 45.5
DS-91	7	C-04-09	53.75	40.0 80.0 120.0	291.4	23.8 41.6 66.5
DS-92	8	C-04-09	57.7	80.0 40.0 120.0	492.1	49.5 ⁽²⁾ 20.4 63.5
DS-93	9	C-04-09	67.6	120.0 40.0 80.0	143.6	63.2 17.0 30.8

Note(s): (1). Specimen deteriorated during initial test, prohibiting additional tests.

^{(2).} Shear plane extended in Hydro-stone encasement and additional preparation was performed prior to additional shearing.

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Siltstone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DS-112	1	C-04-04	96.1	40.0 80.0 120.0	74.6	30.7 53.6 71.1
DS-113	2	C-04-04	96.6	80.0 40.0 120.0	262.2	81.4 44.3 116.3
DS-114	3	C-04-04	97.0	120.0 40.0 80.0	89.6	N/A ⁽¹⁾ 24.9 46.9
DS-115	4	C-04-06	79.1	40.0 80.0 120.0	67.1	30.2 50.9 70.2
DS-116	5	C-04-06	82.5	80.0 40.0 120.0	235.5	52.1 · 21.3 N/A ⁽²⁾
DS-117	6	C-04-05A	80.5	120.0 40.0 80.0	84.1	70.1 22.0 40.5
DS-118	7	C-04-05A	82.0	40.0 80.0 120.0	111.4	32.4 50.1 62.8
DS-119	8	C-04-09	49.7	80.0 40.0 120.0	36.7	24.6 11.6 29.6
DS-120	9	C-04-10	43.3	120.0 40.0 80.0	198.2	90.6 19.3 44.0

Note(s): (1). Stable sliding resistance not achieved in 0.5-inch deflection.

^{(2).} Specimen deteriorated during second test, prohibiting additional tests.

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Shale

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DS-94	1	C-04-01	62.0	40.0 80.0 120.0	40.6	21.8 34.1 52.2
DS-95	2	C-04-01	68.7	80.0 40.0 120.0	77.8	50.1 21.4 72.8
DS-96	3	C-04-01	71.0	120.0 40.0 80.0	173.4	69.7 23.6 40.6
DS-97	4	C-04-13	46.0	40.0 80.0 120.0	61.1	. 36.8 ⁽¹⁾ 42.4 ⁽¹⁾ 25.4 ⁽¹⁾
DS-98	5	C-04-13	47.5	80.0 40.0 120.0	50.8	30.7 15.7 39.3
DS-99	6	C-04-13	48.2	120.0 40.0 80.0	1,916.5	N/A ⁽²⁾ N/A ⁽²⁾ N/A ⁽²⁾
DS-100	7	C-04-13	48.4	40.0 80.0 120.0	19.1	16.8 ⁽¹⁾ 34.1 ⁽¹⁾ N/A ⁽³⁾
D\$-101	8	C-04-13	91.0	80.0 40.0 120.0	90.2	71.7 34.4 80.6
DS-102	9	C-04-13	92.9	120.0 40.0 80.0	134.1	58.1 16.5 30.3

Note(s): (1). Specimen shear surfaces deteriorated with each test.

^{(2).} Specimen deteriorated during initial test, prohibiting additional tests.

^{(3).} Stable sliding resistance not achieved in 0.5-inch deflection.

DOVER DAM UPPER SANDSTONE-NATURAL FRACTURE PEAK

DOVERSANDYSILTSTONENF.xls

Shear Tests -----Linear Regression ———Lower Bound

×

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Limestone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSNF-28	1	C-04-03	84.2	40.0 80.0 120.0	40.7	30.1 56.7 82.0
DSNF-29	2	C-04-06	50.3	80.0 40.0 120.0	82.0	50.9 29.3 84.7
DSNF-30	3	C-04-06	53.4	120.0 40.0 80.0	114.3	80.4 30.3 61.1
DSNF-31	· 4	C-04-11	20.2	40.0 80.0 120.0	30.6	26.2 47.5 71.2
DSNF-32	5	C-04-02	64.6	80.0 40.0 120.0	69.6	62.6 33.0 93.4
DSNF-33	6	C-04-14	83.7	120.0 40.0 80.0	136.7	91.8 33.8 60.7

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Upper Sandstone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSNF-1	. 1	C-04-01	17.2	40.0 80.0 120.0	29.8	24.1 42.0 60.1
DSNF-2	2	C-04-01	17.8	80.0 40.0 120.0	43.0	34.5 16.0 48.3
DSNF-3	3	C-04-01	19.0	120.0 40.0 80.0	72.9	62.5 22.9 44.6
DSNF-4	4	C-04-01	22.5	40.0 80.0 120.0	26.0	24.2 45.2 64.8
DSNF-5	5	C-04-01	40.9	80.0 40.0 120.0	N/A ⁽¹⁾	52.5 25.8 N/A ⁽²⁾
DSNF-6	6	C-04-14	34.6	120.0 40.0 80.0	81.9	70.7 26.3 48.5
DSNF-7	7	C-04-14	37.1	40.0 80.0 120.0	28.5	24.2 45.6 65.3
DSNF-8	8 .	C-04-14	39.0	80.0 40.0 120.0	41.8	38.0 21.7 58.1
DSNF-9	9	C-04-14	40.5	120.0 40.0 80.0	N/A ⁽¹⁾	58.3 20.6 38.2

Note(s): (1). No apparent peak shear stress was observed for initial test. (2). Stable sliding resistance not achieved in 0.5-inch deflection.

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Siltstone / Sandy

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSNF-10	1	C-04-06	60.8	40.0 80.0 120.0	28.2	18.9 31.1 37.5
DSNF-11	2	C-04-06	64.5	80.0 40.0 120.0	48.7	31.9 N/A ⁽¹⁾ N/A ⁽¹⁾
DSNF-12	3	C-04-06	65.2	120.0 40.0 80.0	57.5	51.3 14.2 24.5
DSNF-13	4	C-04-06	67.9	40.0 80.0 120.0	14.1	13.6 N/A ⁽²⁾ N/A ⁽²⁾
DSNF-14	. 5	C-04-06	67.3	80.0 40.0 120.0	33.7	27.6 12.4 36.5
DSNF-15	6	C-04-06	91.0	120.0 40.0 80.0	51.4	49.8 16.8 31.4
DSNF-16	7	C-04-09	52.0	40.0 80.0 120.0	23.8	20.1 33.5 47.3
DSNF-17	8	C-04-09	62.6	80.0 40.0 120.0	29.7	26.7 11.0 N/A ⁽²⁾
DSNF-18	9	C-04-09	65.1	120.0 40.0 80.0	90.6	76.4 27.9 48.5

Note(s): (1). Specimen deteriorated during initial test, prohibiting additional tests.

^{(2).} Stable sliding resistance not achieved in 0.5-inch deflection.

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Siltstone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSNF-37	·1	C-04-04	98.2	40.0 80.0 120.0	11.8	10.9 15.5 22.5
DSNF-38	2	C-04-06	81.7	80.0 40.0 120.0	N/A ⁽¹⁾	37.1 19.4 54.0
DSNF-39	3	C-04-05A	81.3	120.0 40.0 80.0	68.8	43.5 19.6 32.6
DSNF-40	4	C-04-10	42.9	40.0 80.0 120.0	15.9	14.1 26.4 31.7
DSNF-41	5	C-04-10	45.4	80.0 40.0 120.0	47.2	30.1 16.2 39.2
DSNF-42	6	C-04-07	71.8	120.0 40.0 80.0	66.0	50.4 17.6 32.0
DSNF-43	7	C-04-07	73.1	40.0 80.0 120.0	N/A ⁽¹⁾	14.0 26.3 37.0
DSNF-44	8	C-04-07	73.5	80.0 40.0 120.0	N/A ⁽¹⁾	26.0 15.4 36.7
DSNF-45	9	C-04-07	74.9	120.0 40.0 80.0	60.3	47.7 17.1 30.6

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Shale

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psl)	Post Peak Shear Stress (psi)
DSNF-19	1	C-04-01	59.6	40.0 80.0	17.7	16.5 N/A ⁽¹⁾
				120.0		N/A ⁽¹⁾
DSNF-20	2	C-04-01	68.0	80.0	50.1	30.1
				40.0		19.0
				120.0		36.7
DSNF-21	3	C-04-01	69.5	120.0	57.1	49.0
				40.0		15.4
				80.0		24.3
DSNF-22	4	C-04-13	46.9	40.0	13.4	12.9
				80.0		19.6
				120.0		28.3
DSNF-23	5	C-04-13	47.8	80.0	22.7	17.5
				40.0		11.2
				120.0		27.6
DSNF-24	6	C-04-13	86.5	120.0	34.1	32.1
				40.0		9.7
	•			80.0		18.1
DSNF-25	7	C-04-13	88.5	40.0	14.4	12.3
				80.0		17.6
				120.0		29.3
DSNF-26	8	C-04-06	43.1	80.0	38.5	30.1
				40.0		15.0
				120.0		44.3
DSNF-27	9	C-04-06	43.8	120.0	N/A ⁽²⁾	N/A ⁽³⁾
				40.0		14.4
				80.0		21.6

Note(s): (1). Specimen deteriorated during initial test, prohibiting additional tests.

^{(2).} No apparent peak shear stress was observed for initial test.

^{(3).} Stable sliding resistance not achieved in 0.5-inch deflection.

DOVER DAM UPPER SANDSTONE-SAWN SURFACES POST PEAK

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Limestone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSSS-64	1	C-04-05A	50.8	40.0 80.0 120.0	N/A ⁽¹⁾	22.5 46.3 71.7
DSSS-65	2	C-04-05A	51.4	80.0 40.0 120.0	N/A ⁽¹⁾	39.2 19.2 58.7
DSSS-66	3	C-04-05A	53.7	120.0 40.0 80.0	N/A ⁽¹⁾	68.8 10.2 20.1
DSSS-67	4	C-04-09	31.7	40.0 80.0 120.0	N/A ⁽¹⁾	21.8 40.1 71.2
DSSS-68	5	C-04-09	33.6	80.0 40.0 120.0	N/A ⁽¹⁾	44.2 23.5 73.0
DSSS-69	6	C-04-13	80.2	120.0 40.0 80.0	N/A ⁽¹⁾	63.0 17.8 37.7

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Upper Sandstone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSSS-46	1	C-04-01	19.8	40.0	N/A ⁽¹⁾	20.8
				80.0		42.0
				120.0		61.4
DSSS-47	2	C-04-01	21.7	80.0	N/A ⁽¹⁾	41.1
				40.0		19.6
				120.0		61.2
DSSS-48	3	C-04-01	41.6	120.0	N/A ⁽¹⁾	59.4
5000 10	ū		7.1.5	40.0		18.7
				80.0		38.0
DSSS-49	4	C-04-14	22.4	40.0	N/A ⁽¹⁾	16.2
D000-49	7	0-04-14	22.7	80.0	11//	35.8
				120.0		52.0
DSSS-50	5	C-04-13	37.9	80.0	N/A ⁽¹⁾	40.5
	J	0-04-10	07.0	40.0	IV/A	20.3
				120.0		62.6
				12010		
DSSS-51	6	C-04-13	39.2	120.0	N/A ⁽¹⁾	65.2
	-			40.0		19.1
				80.0		39.4

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Siltstone / Sandy

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSSS-52	. 1	C-04-06	62.2	40.0 80.0 120.0	17.0	14.1 26.2 36.7
DSSS-53	2	C-04-06	69.7	80.0 40.0 120.0	38.3	35.9 18.6 50.0
DSSS-54	3	C-04-06	92.0	120.0 , 40.0 80.0	N/A ⁽¹⁾	65.9 19.9 39.9
DSSS-55	4	C-04-09	50.9	40.0 80.0 120.0	17.2	15.6 31.5 46.6
DSSS-56	5	C-04-09	68.9	80.0 40.0 120.0	N/A ⁽¹⁾	39.4 18.9 58.7
DSSS-57	6	C-04-09	71.5	120.0 40.0 80.0	61.2	60.3 20.4 39.6

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Siltstone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSSS-70	1 .	C-04-04	97.4	40.0 80.0 120.0	18.6	13.5 25.6 30.9
DSSS-71	2	C-04-04	98.8	80.0 40.0 120.0	26.1	16.5 9.9 27.3
DSSS-72	3	C-04-06	80.3	120.0 40.0 80.0	41.2	30.3 10.0 16.6
DSSS-73	4	C-04-06	83.3	40.0 80.0 120.0	N/A ⁽¹⁾	13.1 21.9 35.0
DSSS-74	5	C-04-05A	80.9	80.0 40.0 120.0	24.9	17.1 9.2 21.1
DSSS-75	6	C-04-10	47.9	120.0 40.0 80.0	39.7	27.6 8.7 15.2

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Shale

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSSS-58	1	C-04-06	44.6	40.0 80.0 120.0	13.8	10.5 17.3 26.9
DSSS-59	2	C-04-05A	43.0	80.0 40.0 120.0	28.9	20.0 10.4 29.2
DSSS-60	3	C-04-05A	43.8	120.0 40.0 80.0	39.4	28.2 8.4 16.2
DSSS-61	4	C-04-05A	44.2	40.0 80.0 120.0	13.5	8.5 16.0 24.1
DSSS-62	5	C-04-05A	45.3	80.0 40.0 120.0	26.1	18.2 7.5 22.2
DSSS-63	6	C-04-05A	45.7	120.0 40.0 80.0	47.7	35.1 11.2 20.1

DOVERLIMESTONEGROUTONROCK.xls

Shear Tests -----Linear Regression ------Lower Bound

×

DOVER DAM LIMESTONE-GROUT-ON-ROCK SAWN SURFACES

DOVERLIMESTONEGROUTONROCKPOSTPEAK.xls

Shear Tests -----Linear Regression ———Lower Bound

X

DOVER DAM UPPER SANDSTONE-GROUT-ON-ROCK SAWN

DOVERUPPERSSGROUTONROCKPOSTPEAK.xls

Lower Bound

Shear Tests ---- Linear Regression -

×

DOVER DAM SANDY SILTSTONE-GROUT-ON-ROCK SAWN

DOVERSANDYSILTSTONEGROUTONROCKPOSTPEAK.xls

-Lower Bound

Shear Tests -----Linear Regression -

X

DOVER DAM SILTSTONE-GROUT-ON-ROCK SAWN SURFACES

DOVERSILTSTONEGROUTONROCKPOSTPEAK.xis

-Lower Bound

Shear Tests -----Linear Regression --

X

Normal Stress

DOVER DAM SHALE-GROUT-ON-ROCK SAWN SURFACES PEAK

DOVER DAM SHALE-GROUT-ON-ROCK SAWN SURFACES POST

DOVERSHALEGROUTONROCKPOSTPEAK.xls

-Lower Bound

Shear Tests -----Linear Regression --

×

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Limestone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSGR-148	1	C-04-06	53.8	40.0 80.0 120.0	43.6	24.3 38.0 53.0
DSGR-149	2	C-04-06	54.2	80.0 40.0 120.0	359.2	33.6 21.4 66.9
DSGR-150	3	C-04-05A	53.3	120.0 40.0 80.0	233.7	56.1 19.5 37.7
DSGR-151	4	C-04-09	32.1	40.0 80.0 120.0	183.0	29.3 51.1 74.3
DSGR-152	5 .	C-04-09	34.0	80.0 40.0 120.0	60.8	40.7 18.1 56.6
DSGR-153	6	C-04-09	33.1	, 120.0 40.0 80.0	251.8	59.5 16.6 37.0
DSGR-154	7	C-04-11	20.0	40.0 80.0 120.0	26.2	24.5 45.2 66.1
DSGR-155	8	C-04-13	79.6	80.0 40.0 120.0	432.7	53.1 27.0 83.6
DSGR-156	9	C-04-13	83.1	120.0 40.0 80.0	502.6	64.2 19.6 42.4

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Upper Sandstone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSGR-121		C-04-01	20.4	40.0 80.0 120.0	328.5	24.8 49.9 72.9
DSGR-122	2	C-04-01	38.5	80.0 40.0 120.0	297.6	56.3 23.7 76.7
DSGR-123	3	C-04-01	39.2	120.0 40.0 80.0	316.1	84.1 24.6 52.6
DSGR-124	4	C-04-01	45.7	40.0 80.0 120.0	451.3	31.8 60.7 76.1
DSGR-125	5.	C-04-01	46.7	80.0 40.0 120.0	448.2	61.2 31.0 85.7
DSGR-126	6	C-04-14	32.9	120.0 40.0 80.0	490.3	79.1 24.5 48.7
DSGR-127	7	C-04-14	39.8	40.0 80.0 120.0	318.6	26.7 52.8 80.8
DSGR-128	8	C-04-13	38.7	80.0 40.0 120.0	461.1	56.8 27.4 75.3
DSGR-129	9	C-04-13	40.8	120.0 40.0 80.0	428.3	84.0 24.0 49.1

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Siltstone / Sandy

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSGR-130	1	C-04-06	62.6	40.0 80.0 120.0	267.8	17.9 35.0 49.4
DSGR-131	2	C-04-06	63.9	80.0 40.0 120.0	178.2	47.1 24.4 62.1
DSGR-132	3	C-04-06	89.4	120.0 40.0 80.0	437.8	91.5 26.8 55.1
DSGR-133	4	C-04-06	101 .3	40.0 80.0 120.0	316.8	26.0 52.9 82.5
DSGR-134	5	C-04-09	53.2	80.0 40.0 120.0	420.7	51.2 22.9 77.5
DSGR-135	6	C-04-09	56.9	120.0 40.0 80.0	266.6	81.7 ⁽¹⁾ 32.5 52.1
DSGR-136	7	C-04-09	66.5	40.0 80.0 120.0	280.3	27.8 49.8 74.1
DSGR-137	. 8	C-04-09	66.8	80.0 40.0 120.0	426.7	48.7 24.4 73.0
DSGR-138	9	C-04-09	70.7	120.0 40.0 80.0	456.5	80.7 24.1 52.9

Note(s): (1). Shear plane extended in Hydro-stone encasement and additional preparation was performed prior to additional shearing.

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Siltstone

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSGR-157	1	C-04-06	79.6	40.0 80.0 120.0	446.4	21.1 56.6 88.7
DSGR-158	2	C-04-06	83.0	80.0 40.0 120.0	353.7	32.6 15.7 48.1
DSGR-159	3	C-04-06	83.75	120.0 40.0 80.0	291.9	62.4 ⁽¹⁾ 18.6 30.8
DSGR-160	4	C-04-05A	83.8	40.0 80.0 120.0	88.6	29.9 51.6 70.4
DSGR-161	5	C-04-10	46.6	80.0 40.0 120.0	238.0	41.5 15.6 55.8
DSGR-162	6	C-04-10	47.3	120.0 40.0 80.0	253.8	65.6 16.5 39.2
DSGR-163	. 7	C-04-07	72.3	40.0 80.0 120.0	294.5	24.5 45.5 65.4
DSGR-164	8	C-04-07	72.6	80.0 40.0 120.0	257.3	38.1 17.4 47.9
DSGR-165	9	C-04-07	75.6	120.0 40.0 80.0	366.3	67.4 16.5 33.7

Note(s): (1). Shear plane extended in Hydro-stone encasement and additional preparation was performed prior to additional shearing.

Dover Dam Rock Testing Dover, Tuscarawas County, Ohio

Shale

FMSM ID No.	USACE Test No.	Boring	Depth (feet)	Normal Stress (psi)	Peak Shear Stress (psi)	Post Peak Shear Stress (psi)
DSGR-139	1	C-04-13	92.4	40.0 80.0 120.0	206.9	20.0 31.9 46.0
DSGR-140	2	C-04-13	93.6	80.0 40.0 120.0	321.6	42.5 15.6 54.9
DSGR-141	3	C-04-06	42.1	120.0 40.0 80.0	250.9	59.4 17.4 32.7
DSGR-142	4	C-04-05A	40.4	40.0 80.0 120.0	161.7	20.3 36.5 48.6
DSGR-143	5	C-04-05A	41.1	80.0 40.0 120.0	187.2	36.5 17.3 47.9
DSGR-144	6	C-04-05A	41.8	120.0 40.0 80.0	254.4	56.3 18.8 33.6
DSGR-145	7	C-04-05A	43.5	40.0 80.0 120.0	189.2	19.1 32.6 47.3
DSGR-146	8	C-04-05A	44.4	80.0 40.0 120.0	233.7	39.8 20.5 54.9
DSGR-147	9	C-04-05A	44.8	120.0 40.0 80.0	209.9	52.8 17.4 29.6

		R - LIMESTONI E BEARING CA				
DUT DADAUGTED						
PUT PARAMETERS	c = cohesic	n: 150 psi	Required input for	equations 6-1, 6-4, 6	6-5, 6-6	21600.0 ps
	φ = phi ang		Required input for	all equations		
	D=depth of foundation below ground surface			equations 6-1, 6-3		
	γ = effective unit weight of the rock mas			equations 6-1, 6-3,		
	B= width of the foundation			equations 6-1, 6-3, 6	5-4, 6-6, Goodman	
	J = correction factor (see figure 6-2 of EM 1110-1-290) L = length of foundation	,	Required input for		oundation shape) and	LL/R ratio
	S = Joint spacin			equations 6-6 and G		CBrano
	(q _u) = unconfined compressive streng	•			sion equation) and G	oodman
	(RMR) Rock Mass Ratio	,		equations 6-7 (cohe		
	FS = factor of safety (min. 3, see eq. 6-11 EM 1110-1-290	•			ate Goodman FS inpu	ut.
OHESION EQUATION (eq	•					
	(c) cohesion	s = 0.001 n = 2 psi				
ISCELLANEOUS STEPS						
00222 112000 0721 0	$N_4 = \tan^2(45 + \phi/2)$	20.33				
	$N = N_1^{1/2}(N_1^2 - 1)$	1858.44	1765.52	1672.59	1579.67	1300.91
	$N_y = N_y^{-1/2} (N_y^{-2} - 1)$ $N_q = N_y^{-2}$	413.20	1700.02	7072.00	10.0.0.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$N_c = 2N_{\bullet}^{1/2}(N_{\bullet} + 1)$	192.31	201.93	215.39	240.39	230.77
	$N_{cr} = 2N_{\phi}^{2}/1+N_{\phi} (\cot \phi) (S/B) (1-1/N_{\phi}) - N_{\phi} (\cot \phi) + 2N_{\phi}^{1/2}$	9.4	201.93	215.55	240.33	250.11
MDDESSIVE FAILURE /	equation 6-5, EM 1110-1-2908)					
R	MODE: open, near vertical joint set(s) S <b: compressive="" fail<="" td=""><td>lure of individual rock o</td><td>olumns.</td><td></td><td></td><td>•</td></b:>	lure of individual rock o	olumns.			•
	q _{uit} = 2 c tan(45 + ϕ /2)					
	a	4050				
∥ _• 'S _• ∥	q _{ult} = ultimate bearing capacity	1353 psi				
	q _a = allowable bearing capacity	451 psi				
NERAL SHEAR FAILUR	E WITHOUT COHESION (equation 6-3, EM 1110-1-2908)	al abase failure with no	tential for failure plan	a ininte		
	MODE 1: moderately dipping joint set(s) S <b or="" s="">B: gener MODE 2: two or more closely space joint sets. S<<b: gener<="" td=""><td></td><td></td><td></td><td></td><td></td></b:>					
	MIODE 2. Two of fillole closely space joint sets. 5-15. gener	ai sileai jajiule willi iii	egulai lanule sullace	s tillough rock mass	•	
	a =0.5vPN +vDN					
$\overline{\mathcal{M}}$	$q_{ult}=0.5\gamma BN_{\gamma}+\gamma DN_{q}$	-4-1-1 (2-40		-4-/ 1 /8-2		airelar
$/ \Lambda \Lambda \Lambda$	L/B ratio: 1.8571	strip L/B=>10	strip L/B=5	strip L/B=2	square	circular
. / / X /	q _{ult} = ultimate bearing capacity	3308701 psf	3149340 psf	2989979 psf	2830618 psf	2352535 p
/ / /\ \		22977 psi	21870 psi	20704	19657 psi	16337 p
/ / / / /		pai	psi	20764_psi		
, , , , , ,	q _a = allowable bearing capacity	7659 psi	7290 psi	6921 psi	6552 psi	5446 p
ENERAL SHEAD FAILLIR						
ENERAL SHEAR FAILUR	q _a = allowable bearing capacity E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints \$>>B: gener	7659 psi	7290 psi	6921 psi		
ENERAL SHEAR FAILUR	E WITH COHESION (equation 6-1, EM 1110-1-2908)	7659 psi	7290 psi	6921 psi		
ENERAL SHEAR FAILUR	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: gener	7659 psi	7290 psi	6921 psi		
ENERAL SHEAR FAILUR	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general she MODE 2. Closed, near vertical joint set(s) S <b: general="" she<="" td=""><td>7659 psi</td><td>7290 psi</td><td>6921 psi</td><td></td><td></td></b:>	7659 psi	7290 psi	6921 psi		
ENERAL SHEAR FAILUR	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5yBN<sub" she="">y+yDN_q L/B ratio: 1.8571</b:>	rai shear failure along var failure along well de	7290 psi vell defined failure su fined failure surfaces strip L/B=5	6921 psi urfaces. s. strip L/B=2	6552 psi	5446 p
ENERAL SHEAR FAILUR	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5yBN<sub" she="">y+yDN_q</b:>	rai shear failure along var failure along well de strip L/B=>10 7462639 psf	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf	6921 psi urfaces. s. strip L/B=2 7642389 psf	6552 psi square 8023040 psf	5446 p
ENERAL SHEAR FAILUR	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5yBN<sub" she="">y+yDN_q L/B ratio: 1.8571</b:>	rai shear failure along var failure along well de strip L/B=>10 7462639 psf 51824 psi	vell defined failure sufined failure surfaces strip L/B=5 7510975 psf 52160 psi	6921 psi urfaces. s. strip L/B=2	6552 psi	circular 7337261 p 50953 p
	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" q<sub="" she="">utt=cN_c+0.5γBN_c+γDN_q L/B ratio: 1.8571 q_{utt}= ultimate bearing capacity q_a = allowable bearing capacity</b:>	rai shear failure along var failure along well de strip L/B=>10 7462639 psf	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi	square 8023040 psf 55716 psi	circular 7337261 p 50953 p
	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general she MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cNc+0.5γBN<sub" she="">γ+γDN_q L/B ratio: 1.8571 quit= ultimate bearing capacity</b:>	rai shear failure along var failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi	square 8023040 psf 55716 psi	circular 7337261 p 50953 p
	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: genet MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5γBN<sub" she="">γ+γDN_q L/B ratio: 1.8571 qut= ultimate bearing capacity q_a = allowable bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local shear</b:>	rai shear failure along var failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi	square 8023040 psf 55716 psi	circular 7337261 p 50953 p
	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5γBN<sub" she="">γ+γDN_q L/B ratio: 1.8571 qut= ultimate bearing capacity q_a = allowable bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat qut=cNc+0.5γBN_γ</b:>	rai shear failure along wall de strip L/B=>10 7462639 psf 51824 psi 17275 psi	vell defined failure sufined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi	square 8023040 psf 55716 psi 18572 psi	circular 7337261 p 50953 p 16984 p
	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5γBN<sub" she="">γ+γDN_q L/B ratio: 1.8571 qut= ultimate bearing capacity q_a = allowable bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat qut=cNc+0.5γBN_γ L/B ratio: 1.8571</b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi	vell defined failure sufined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi	square 8023040 psf 55716 psi 18572 psi	circular 7337261 p 50953 p 16984 p
	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5γBN<sub" she="">γ+γDN_q L/B ratio: 1.8571 qut= ultimate bearing capacity q_a = allowable bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat qut=cNc+0.5γBN_γ</b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf	vell defined failure sufined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi lized brittle fracture strip L/B=5 7389494 psf	6921 psi urfaces. 5. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf	square 8023040 psf 55716 psi 18572 psi	circular 7337261 p 50953 p 16984 p
	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 Quit = ultimate bearing capacity q_a = allowable bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat quit=cN_c+0.5γBN_γ LB ratio: 1.8571 Quit = ultimate bearing capacity</b:>	rai shear failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi slized brittle fracture strip L/B=5 7389494 psf 51316 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi	circular 7337261 p 50953 p 16984 p
	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5γBN<sub" she="">γ+γDN_q L/B ratio: 1.8571 qut= ultimate bearing capacity q_a = allowable bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat qut=cNc+0.5γBN_γ L/B ratio: 1.8571</b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf	vell defined failure sufined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi lized brittle fracture strip L/B=5 7389494 psf	6921 psi urfaces. 5. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf	square 8023040 psf 55716 psi 18572 psi	circular 7337261 p 50953 p 16984 p
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general she MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 q_{ut} = ultimate bearing capacity q_a = allowable bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat q_{ut}=cN_c+0.5γBN_γ LB ratio: 1.8571 q_{ut} = ultimate bearing capacity q_a = allowable bearing capacity</b:>	rai shear failure along wall de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by local strip L/B=>10 7341158 psf 50980 psi 16993 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi	circular 7337261 p 50953 p 16984 p
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" q<sub="" she="">ut=cN_c+0.5γBN_γ+γDN_q LB ratio: 1.8571 Q_{ut} = ultimate bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat q_{ut}=cN_c+0.5γBN_γ LB ratio: 1.8571 Q_{ut} = ultimate bearing capacity q_a = allowable bearing capacity</b:>	rai shear failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 Quit = ultimate bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat quit=cN_c+0.5γBN_γ LB ratio: 1.8571 Quit = ultimate bearing capacity q_a = allowable bearing capacity ation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints S> MODE: open or closed, widely spaced and vertical joints S></b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 pr 50953 pr 16984 pr circular 7215780 pr 50110 pr 16703 pr
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general she MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 q_{ut} = ultimate bearing capacity q_a = allowable bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat q_{ut}=cN_c+0.5γBN_γ LB ratio: 1.8571 q_{ut} = ultimate bearing capacity q_a = allowable bearing capacity</b:>	rai shear failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 Quit = ultimate bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat quit=cN_c+0.5γBN_γ LB ratio: 1.8571 Quit = ultimate bearing capacity q_a = allowable bearing capacity ation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints S> MODE: open or closed, widely spaced and vertical joints S></b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (EWITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: end="" few="" full="" g<="" general="" joints="" of="" s<b:="" set(s)="" she="" td="" the=""><td>rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi</td><td>vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi</td><td>6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi</td><td>square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi</td><td>circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p</td></b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general she MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 Quit = ultimate bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat quit=cN_c+0.5γBN_γ LB ratio: 1.8571 Quit = ultimate bearing capacity q_a = allowable bearing capacity ation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints S>Quit = ultimate bearing capacity q_a = allowable bearing capacity</b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (EWITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: end="" few="" full="" g<="" general="" joints="" of="" s<b:="" set(s)="" she="" td="" the=""><td>rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi</td><td>vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi</td><td>6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi</td><td>square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi</td><td>circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p</td></b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (EWITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 q_{uit} = ultimate bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat q_{uit}=cN_c+0.5γBN_γ LB ratio: 1.8571 q_{uit} = ultimate bearing capacity q_a = allowable bearing capacity q_a = allowable bearing capacity ation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints S>Q_{uit} = ultimate bearing capacity q_a = allowable bearing capacity troduction to Rock Mechanics,1980, P311, EQ 9.8) F.S. = factor of safet</b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 18993 psi B: Failure initiated by s strip L/B=<32 554 psi 185 psi 185 psi	vell defined failure suffined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: end="" few="" full="" gen<="" general="" joints="" of="" s<b:="" set(s)="" she="" td="" the=""><td>rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi 16993 psi 18993 psi 18993 psi 18993 psi 18993 psi 18993 psi 18993 psi</td><td>vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi</td><td>6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi</td><td>square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi</td><td>circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p</td></b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi 16993 psi 18993 psi 18993 psi 18993 psi 18993 psi 18993 psi 18993 psi	vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (EWITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: content="" full="" general="" of="" set="" she="" t<="" td="" the=""><td>7659 psi rai shear failure along well de strip L/B=>10 7462639 psi 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi 16993 psi </td><td>vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi</td><td>6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi</td><td>square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi</td><td>circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p</td></b:>	7659 psi rai shear failure along well de strip L/B=>10 7462639 psi 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi 16993 psi	vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: end="" few="" full="" gen<="" general="" joints="" of="" s<b:="" set(s)="" she="" td="" the=""><td>rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi 16993 psi 18993 psi 18993 psi 18993 psi 18993 psi 18993 psi 18993 psi</td><td>vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi</td><td>6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi</td><td>square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi</td><td>circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p</td></b:>	rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi 16993 psi 18993 psi 18993 psi 18993 psi 18993 psi 18993 psi 18993 psi	vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (EWITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B : general MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cNc+0.5γBN<sub" she="">γ+γDN_q LB ratio: 1.8571 quit = ultimate bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat quit=cNc+0.5γBN_γ LB ratio: 1.8571 quit = ultimate bearing capacity qa = allowable bearing capacity qa = allowable bearing capacity ation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints S> quit = ultimate bearing capacity qa = allowable bearing capacity troduction to Rock Mechanics, 1980, P311, EQ 9.8) F.S. = factor of safe Nsubphi = NPhi-1 = S/B =</b:>	7659 psi rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi 18993 psi -B: Failure initiated by s strip L/B=<32 554 psi 185 psi 20.262024 19.262024 19.262024 0.5714286	vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general she MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 Quit = ultimate bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat quit=cN_c+0.5γBN_γ LB ratio: 1.8571 Quit = ultimate bearing capacity q_a = allowable bearing capacity q_a = allowable bearing capacity ation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints S> quit = ultimate bearing capacity q_a = allowable bearing capacity troduction to Rock Mechanics,1980, P311, EQ 9.8) F.S. = factor of safe Nsubphi = NPhi-1 = S/B = Intermediate</b:>	7659 psi rai shear failure along war failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 18993 psi 18993 psi B: Failure initiated by s strip L/B=<32 554 psi 185 psi 185 psi ety: 5 (Addit 20.262024 19.262024 19.262024 0.5714286 10.902537	vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p
OCAL SHEAR FAILURE (EWITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general she MODE 2. Closed, near vertical joint set(s) S <b: general="" quit="cN<sub" she="">c+0.5γBN_γ+γDN_q LB ratio: 1.8571 Quit = ultimate bearing capacity equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local sheat quit=cN_c+0.5γBN_γ LB ratio: 1.8571 Quit = ultimate bearing capacity q_a = allowable bearing capacity q_a = allowable bearing capacity q_a = allowable bearing capacity ation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints S> Quit = ultimate bearing capacity q_a = allowable bearing capacity troduction to Rock Mechanics,1980, P311, EQ 9.8) F.S. = factor of safe Nsubphi = NPhi-1 = S/B = Intermediate Intermediate Intermediate</b:>	7659 psi rai shear failure along well de strip L/B=>10 7462639 psf 51824 psi 17275 psi r failure caused by loca strip L/B=>10 7341158 psf 50980 psi 16993 psi 16993 psi 18993 psi B: Failure initiated by s strip L/B=<32 554 psi 185 psi 20.262024 19.262024 0.5714286 10.902537 0.566012	vell defined failure surfaces strip L/B=5 7510975 psf 52160 psi 17387 psi alized brittle fracture strip L/B=5 7389494 psf 51316 psi 17105 psi	6921 psi urfaces. s. strip L/B=2 7642389 psf 53072 psi 17691 psi strip L/B=2 7520909 psf 52229 17410 psi	square 8023040 psf 55716 psi 18572 psi square 7901560 psf 54872 psi 18291 psi	circular 7337261 p 50953 p 16984 p circular 7215780 p 50110 p 16703 p

		PPER SANDST BEARING CAP				
NPUT PARAMETERS	·					
NPUI PARAMETERS	c = cohesion	88 psi	Required input for	equations 6-1, 6-4,	8-5. 6-6	12672.0 psf
			Required input for		,	,
	D=depth of foundation below ground surface	e: 3 ft	Required input for	equations 6-1, 6-3		
	γ = effective unit weight of the rock mass			equations 6-1, 6-3,		
	B= width of the foundation				8-4, 6-8, Goodman	
	J = correction factor (see figure 6-2 of EM 1110-1-2908		Required input for		foundation chang) as	ad I /D ratio
	L ≈ length of foundation S = Joint spacing			equations 6-6 and	foundation shape) ar Goodman	Id L/B ratio
	(q₀) = unconfined compressive strength				esion equation) and	Goodman
	(RMR) Rock Mass Rating	•		equations 6-7 (coh		oooumun
	FS = factor of safety (min. 3, see eq. 6-11 EM 1110-1-2908				rate Goodman FS in	put.
COHESION EQUATION (equ	s =	0.023		***		
	(c) cohesion =	12 psi				
MISCELLANEOUS STEPS						
	$N_{\phi} = \tan^2(45 + \phi/2)$	18.74				
	$N_{\gamma} = N_{\phi}^{1/2} (N_{\phi}^{2} - 1)$	1516.92	1441.07	1365.22	1289.38	1061.84
	$N_q = N_{\phi}^2$	351.37				
	$N_c = 2N_{\phi}^{1/2}(N_{\phi} + 1)$	170.97	179.52	191.49	213.71	205.16
	$N_{cr} = 2N_{\phi}^{2}/1+N_{\phi} (\cot \phi) (S/B) (1-1/N_{\phi}) - N_{\phi} (\cot \phi) + 2N_{\phi}^{1/2}$	8.9				
OMPRESSIVE FAILURE (equation 6-5, EM 1110-1-2908) MODE: open, near vertical joint set(s) S <b: compressive="" fail<="" td=""><td>ure of individual rock</td><td>columns.</td><td></td><td></td><td></td></b:>	ure of individual rock	columns.			
← ^R →	$q_{ut} = 2 c \tan(45 + \phi/2)$					
s_l	q _{ult} = ultimate bearing capacity	762 psi				
1111	Q _a = allowable bearing capacity	254 psi				
ENERAL SHEAR FAILURE	E WITHOUT COHESION (equation 6-3, EM 1110-1-2908) MODE 1: moderately dipping joint set(s) S <b or="" s="">B: gener MODE 2: two or more closely space joint sets. S<<b: gener<="" td=""><td></td><td></td><td></td><td>nss.</td><td></td></b:>				nss.	
	$q_{ut}=0.5\gamma BN_{y}+\gamma DN_{q}$					
/ X X X	L/B ratio: 1.8571	strip L/B=>10	strip L/B=5	strip L/B=2	square	circular
/ / \/ \/ \	Q _{utt} ≠ ultimate bearing capacity	2704811 psf	2574735 psf	2444660 psf	2314584 psf	1924358 psi
/		18783 psi	17880 psi	16977 psi	16074 psi	13364 ps
•	q _e = allowable bearing capacity	6261 psi	5960 psi	5659 psi	5358 psi	4455 ps
GENERAL SHEAR FAILURI	E WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: gener MODE 2. Closed, near vertical joint set(s) S <b: general="" q<sub="" she="">ut=cN_c+0.5γBN_γ+γDN_α</b:>					
	L/B ratio: 1.8571	strip L/B=>10	strip L/B=5	strip L/B=2	square	circular
	Q _{ut} = ultimate bearing capacity	4871350 psf	4849602 psf	4871184 psf	5022759 psf	4524205 ps
	full manners are many	33829 psi	33678 psi	33828 psi	34880 psi	31418 ps
100	Q _a = allowable bearing capacity	11276 psi	11226 psi	11276 psi	11627 psi	10473 ps
OCAL SHEAR FAILURE (6	equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local shea	r failure caused by lo	calized brittle fractur	е		
	q _{uit} =cN _c +0.5γBN _γ	*				
	L/B ratio: 1.8571	strip L/B=>10	strip L/B=5	strip L/B=2	square	circular
	q _{uit} = ultimate bearing capacity	4768049 psf	4746300 psf	4767882 psf	4919457 psf	4420904 ps
	im.	33111 psi	32960 psi	33110 psi	34163 psi	30701 ps
	q _a = allowable bearing capacity	11037 psi	10987 psi	11037 psi	11388 psi	10234 ps
SPLITTING FAILURE (equa	tion 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints S>	B: Failure initiated by	splitting leading to	general shear failur	me.	
E	,,,		, , , , , , , , , , , , , , , , , , , ,			circular
	- a differente bandon access?	strip L/B=<32			square	
	q _{uit} = ultimate bearing capacity	309 psi			666 psi	784 ps
	Q _a = allowable bearing capacity	103 psi			222 psi	261 ps
GOODMAN EQUATION (Int	roduction to Rock Mechanics,1980, P311, EQ 9.8)	_				· ·
	F.S. = factor of safety		ional input value)			
	Nsubphi =	18.886695				
	NPhi-1 =	17.686695				
	S/B =	0.5714286				
	Intermediate	10,002728				
	Intermediate	0.565551 2609				
	Capacity =	2009				
	W - allowable bands and "					
	Q _a = allowable bearing capacity	522 psi				

		- SILTSTONE / S/ ILE BEARING CA				
NPUT PARAMETERS						
IFUI FARAMETERS	c = cohe ∳ ≈ phi a D=depth of foundation below ground su	ingle: 46 degre	e Required input for	equations 6-1, 6-4, 6 all equations equations 6-1, 6-3	8-5, 6-6	2880.0 ps
	γ = effective unit weight of the rock r B≂ width of the found	mass: 98 pcf	Required input for	equations 6-1, 6-3, equations 6-1, 6-3,		
	J = correction factor (see figure 6-2 of EM 1110-1-2	2908): 1.0	Required input for	equation 6-6		
	L = length of founds S = Joint spa			equation 6-6 (strip for equations 6-6 and 0		d L/B ratio
	(q _u) = unconfined compressive stre			equations 6-7 (cohe		Goodman
	(RMR) Rock Mass Ra FS = factor of safety (min. 3, see eq. 6-11 EM 1110-1-7			equations 6-7 (cohe all equations, separ		out.
OHESION EQUATION (e	equation 6-7)					
	(c) cohes	s = 0.004 sion = 7 psi				
IISCELLANEOUS STEPS	N ₄ =tan²(45+t√2)	6.12				
	$N_y = N_0^{-1/2} (N_0^2 - 1)$	90.30	85.78	81.27	76.75	63.21
	$N_q = N_{\phi}^2$	37.49				
	$N_0=2N_0^{1/2}(N_0+1)$	35.25	37.01	39.48	44.06	42.30
	$N_{cr} = 2N_{\phi}^{2}/1+N_{\phi}$ (cot ϕ) (S/B) (1-1/N _{ϕ}) - N _{ϕ} (cot ϕ) + $2N_{\phi}^{1/2}$	3.9				
OMPRESSIVE FAILURE	(equation 6-5, EM 1110-1-2908) MODE: open, near vertical joint set(s) S <b: compressive<="" td=""><td>e failure of individual roc</td><td>k columns.</td><td></td><td></td><td></td></b:>	e failure of individual roc	k columns.			
← →	$q_{ult} = 2 c tan(45 + \phi/2)$					
	q _{ult} ≃ ultimate bearing capacity	99 psi				
+ ⁸ →	Q _a = allowable bearing capacity	33 psi				
ENERAL SHEAR FAILU	RE WITHOUT COHESION (equation 6-3, EM 1110-1-2908) MODE 1: moderately dipping joint set(s) S <b or="" s="">B: ge MODE 2: two or more closely space joint sets. S<<b: ge<="" td=""><td>eneral shear failure with</td><td></td><td></td><td>55.</td><td></td></b:>	eneral shear failure with			55 .	
	$q_{ult}=0.5\gamma BN_{y}+\gamma DN_{q}$					
$/ X \wedge X$	L/B ratio: 1.8571	strip L/B=>10	strip L/B=5	strip L/B=2	square	circular
/ / X X \ \	q _{ult} = ultimate bearing capacity	165878 psf	158136 psf	150393 psf	142650 psf	119422 ps
			4000	4044	004	920
	q _a = allowable bearing capacity	1152 psi 384 psi	1098 psi 366 psi	1044 psi 348 psi	991 psi 330 psi	
BENERAL SHEAR FAILU	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: ge MODE 2. Closed, near vertical joint set(s) S <b: general<="" td=""><td>384 psi eneral shear failure alon</td><td>366 psi</td><td>348 psi surfaces.</td><td></td><td></td></b:>	384 psi eneral shear failure alon	366 psi	348 psi surfaces.		
BENERAL SHEAR FAILU	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: ge MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5yBN,+vDNq</td"><td>eneral shear failure along well</td><td>366 psi g well defined failure defined failure surfac</td><td>348 psi</td><td>330 psi</td><td>276 ps</td></b:>	eneral shear failure along well	366 psi g well defined failure defined failure surfac	348 psi	330 psi	276 ps
SENERAL SHEAR FAILU	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: g MODE 2. Closed, near vertical joint set(s) S <b: 1.8571<="" b="" general="" l="" qut="cNc+0.5yBN,+YDNq" ratio:="" td=""><td>and psi eneral shear failure alon shear failure along well strip L/B=>10</td><td>366 psi g well defined failure defined failure surface strip L/B=5</td><td>348 psi surfaces. ses. strip L/B=2</td><td>330 psi</td><td>276 ps</td></b:>	and psi eneral shear failure alon shear failure along well strip L/B=>10	366 psi g well defined failure defined failure surface strip L/B=5	348 psi surfaces. ses. strip L/B=2	330 psi	276 ps
SENERAL SHEAR FAILU	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: ge MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cNc+0.5yBN,+vDNq</td"><td>eneral shear failure along well</td><td>366 psi g well defined failure defined failure surfac</td><td>348 psi surfaces. ses. strip L/B=2 264099 psf 1834 psi</td><td>330 psi square 269554 psf 1872 psi</td><td>276 ps circular 241249 ps 1675 ps</td></b:>	eneral shear failure along well	366 psi g well defined failure defined failure surfac	348 psi surfaces. ses. strip L/B=2 264099 psf 1834 psi	330 psi square 269554 psf 1872 psi	276 ps circular 241249 ps 1675 ps
ENERAL SHEAR FAILU	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: g MODE 2. Closed, near vertical joint set(s) S <b: 1.8571<="" b="" general="" l="" qut="cNc+0.5yBN,+YDNq" ratio:="" td=""><td>eneral shear failure along well strip L/B=>10 267402 psf</td><td>g well defined failure defined failure surface strip L/B=5 264735 psf</td><td>348 psi surfaces. ses. strip L/B=2 284099 psf</td><td>square 269554 psf</td><td>276 ps circular 241249 ps 1675 ps</td></b:>	eneral shear failure along well strip L/B=>10 267402 psf	g well defined failure defined failure surface strip L/B=5 264735 psf	348 psi surfaces. ses. strip L/B=2 284099 psf	square 269554 psf	276 ps circular 241249 ps 1675 ps
	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cN<sub">c+0.5γBN,+γDN_q LB ratio: 1.8571 qut = ultimate bearing capacity</b:>	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi	348 psi surfaces. ses. strip L/B=2 264099 psf 1834 psi 611 psi	330 psi square 269554 psf 1872 psi	276 ps circular 241249 ps 1675 ps
	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" q<sub="">ut=cN_c+0.5γBN_r+γDN_q LB ratio: 1.8571 q_{ut} = ultimate bearing capacity q_a = allowable bearing capacity (equation 6-4, EM 1110-1-2908)</b:>	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi	348 psi surfaces. ses. strip L/B=2 264099 psf 1834 psi 611 psi	330 psi square 269554 psf 1872 psi	276 ps circular 241249 ps 1675 ps
	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2: Closed, near vertical joint set(s) S <b: general="" q<sub="">ut=cN_c+0.5γBN,+γDN_q L/B ratio: 1.8571 q_{ut} = ultimate bearing capacity q_a = allowable bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s</b:>	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi	348 psi surfaces. ses. strip L/B=2 264099 psf 1834 psi 611 psi	330 psi square 269554 psf 1872 psi	276 ps circular 241249 ps 1675 ps
	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: general="" qut="cN<sub">c+0.5yBN_r+yDN_q LB ratio: 1.8571 Qut = ultimate bearing capacity Q_a = allowable bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Qut=cN_c+0.5yBN_r</b:>	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by lo	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf	348 psi surfaces. ses. strip L/B=2 264099 psf 1834 psi 611 psi re strip L/B=2 253076 psf	square 289554 psf 1872 psi 624 psi square 258532 psf	circular 241249 ps 1675 ps 558 ps
	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: (equation="" 1.8571="" 1110-1-2908)="" 6-4,="" bearing="" brittle="" capacity="" em="" few="" general="" intact="" joints="" lb="" mode:="" or="" qa="allowable" quit="ultimate" ratio:="" rock="" s="" with="">>B: local s quit=cNo+0.5yBN, LB ratio: 1.8571 quit = ultimate bearing capacity</b:>	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by lo	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf 1762 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 611 psi re strip L/B=2 253076 psf 1757 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi	circular 241249 ps 1675 ps 558 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Qut=cN _c +0.5yBN _c +yDN _q LB ratio: 1.8571 Qut = ultimate bearing capacity Qa = allowable bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Qut=cN _c +0.5yBN _c LB ratio: 1.8571 Qut = ultimate bearing capacity	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by lo	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf	348 psi surfaces. ses. strip L/B=2 264099 psf 1834 psi 611 psi re strip L/B=2 253076 psf	square 289554 psf 1872 psi 624 psi square 258532 psf	circular 241249 ps 1675 ps 558 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general MODE 2. Closed, near vertical joint set(s) S <b: (equation="" 1.8571="" 1110-1-2908)="" 6-4,="" bearing="" brittle="" capacity="" em="" few="" general="" intact="" joints="" lb="" mode:="" or="" qa="allowable" quit="ultimate" ratio:="" rock="" s="" with="">>B: local s quit=cNo+0.5yBN, LB ratio: 1.8571 quit = ultimate bearing capacity</b:>	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by ke strip L/B=>10 256379 psf 1780 psi 593 psi s S>8: Failure initiated by	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psi 1872 psi 624 psi square 258532 psi 1795 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 1599 ps 533 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Quit=cN _c +0.5yBN _r +yDN _q LB ratio: 1.8571 Quit = ultimate bearing capacity Qa = allowable bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Quit=cN _c +0.5yBN _r LB ratio: 1.8571 Quit = ultimate bearing capacity qa = allowable bearing capacity unit of the points S>>B: local s Quit=cN _c +0.5yBN _r LB ratio: 1.8571 Quit = ultimate bearing capacity qa = allowable bearing capacity uation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by ke strip L/B=>10 256379 psf 1780 psi 593 psi s S>B: Failure initiated b	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 1599 ps 533 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Quit=cN _c +0.5yBN _r +yDN _q LB ratio: 1.8571 Qut = ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Qut = allowable bearing capacity Qut = allowable bearing capacity qut = cN _c +0.5yBN _r LB ratio: 1.8571 Qut = ultimate bearing capacity que = allowable bearing capacity qut = ultimate bearing capacity uation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints Qut = ultimate bearing capacity	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by ke strip L/B=>10 256379 psf 1780 psi 593 psi s S>B: Failure initiated b strip L/B=<32 31 psi	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 1599 ps 533 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Quit=cN _c +0.5yBN _r +yDN _q LB ratio: 1.8571 Quit = ultimate bearing capacity Qa = allowable bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Quit=cN _c +0.5yBN _r LB ratio: 1.8571 Quit = ultimate bearing capacity qa = allowable bearing capacity unit of the points S>>B: local s Quit=cN _c +0.5yBN _r LB ratio: 1.8571 Quit = ultimate bearing capacity qa = allowable bearing capacity uation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by ke strip L/B=>10 256379 psf 1780 psi 593 psi s S>B: Failure initiated b	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	241249 ps 1675 ps 558 ps circular 230227 ps 1599 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Quit=cN _c +0.5yBN _r +yDN _q LB ratio: 1.8571 Qut = ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Qut = allowable bearing capacity Qut = allowable bearing capacity qut = cN _c +0.5yBN _r LB ratio: 1.8571 Qut = ultimate bearing capacity que = allowable bearing capacity qut = ultimate bearing capacity uation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints Qut = ultimate bearing capacity	eneral shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by ke strip L/B=>10 256379 psf 1780 psi 593 psi s S>B: Failure initiated b strip L/B=<32 31 psi	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 1599 ps 533 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Quit=cN _c +0.5yBN _r +yDN _q LB ratio: 1.8571 Qut = ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Qut = cN _c +0.5yBN _r LB ratio: 1.8571 Qut = ultimate bearing capacity q _a = allowable bearing capacity q _b = allowable bearing capacity q _a = allowable bearing capacity q _b = allowable bearing capacity q _c = allowable bearing capacity Qut = ultimate bearing capacity q _d = allowable bearing capacity q _d = allowable bearing capacity q _d = allowable bearing capacity q _d = allowable bearing capacity	eneral shear failure alons shear failure along well strip L/B=>10 267402 psf 1857 psi 619 psi shear failure caused by ke strip L/B=>10 256379 psf 1780 psi 593 psi s S>B: Failure initiated b strip L/B=<32 31 psi 10 psi	g well defined failure defined failure surface defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi cocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 1599 ps 533 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Qut=cNo+0.5yBNy+yDNq LB ratio: 1.8571 Qut = ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Qut=cNo+0.5yBNy LB ratio: 1.8571 Qut = ultimate bearing capacity qa = allowable bearing capacity qa = allowable bearing capacity qa = allowable bearing capacity qa = allowable bearing capacity uation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints qut = ultimate bearing capacity qa = allowable bearing capacity rutimate bearing capacity qa = allowable bearing capacity Rock = ultimate bearing capacity qa = allowable bearing capacity F.S. = factor of s. Nsubphi =	### 184 ### 184 ### 185 ### 18	g well defined failure defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi ocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 1599 ps 533 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Quit=cN _c +0.5yBN _r +yDN _q LB ratio: 1.8571 Qut = ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Quit=cN _c +0.5yBN _r LB ratio: 1.8571 Qut = ultimate bearing capacity q _a = allowable bearing capacity q _b = allowable bearing capacity q _a = allowable bearing capacity q _b = allowable bearing capacity q _c = allowable bearing capacity q _d = allowable bearing capacity nutroduction to Rock Mechanics, 1980, P311, EQ 9.8) F.S. = factor of si Nsubphi = NPhi-1 =	### 184 ### 184 ### 185 ### 18	g well defined failure defined failure surface defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi cocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 533 ps circular 78 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Qut=cNo+0.5yBNy+yDNq LB ratio: 1.8571 Qut = ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Qut=cNo+0.5yBNy LB ratio: 1.8571 Qut = ultimate bearing capacity qa = allowable bearing capacity qa = allowable bearing capacity qa = allowable bearing capacity qa = allowable bearing capacity uation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints qut = ultimate bearing capacity qa = allowable bearing capacity rutimate bearing capacity qa = allowable bearing capacity Rock = ultimate bearing capacity qa = allowable bearing capacity F.S. = factor of s. Nsubphi =	### 184 ### 184 ### 185 ### 18	g well defined failure defined failure surface defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi cocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 533 ps circular 78 ps
OCAL SHEAR FAILURE	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Quit=CN _c +0.5yBN _r +yDN _q LB ratio: 1.8571 Qut = ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Qut=CN _c +0.5yBN _r LB ratio: 1.8571 Qut = ultimate bearing capacity q _a = allowable bearing capacity q _b = allowable bearing capacity q _a = allowable bearing capacity q _b = allowable bearing capacity q _c = allowable bearing capacity q _d = allowable bearing capacity nutroduction to Rock Mechanics, 1980, P311, EQ 9.8) F.S. = factor of si Nsubphi = NPhi-1 = S/B = Intermediate intermediate Intermediate Intermediate	### 184 ### 184 ### 185 ### 18	g well defined failure defined failure surface defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi cocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 533 ps circular 78 ps
OCAL SHEAR FAILURE PLITTING FAILURE (equ	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: general Quit=cNo+0.5yBN,+yDNo LB ratio: 1.8571 Quit = ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local s Quit=cNo+0.5yBN, LB ratio: 1.8571 Quit = ultimate bearing capacity Qa = allowable bearing capacity Qa = allowable bearing capacity Qa = allowable bearing capacity Qa = allowable bearing capacity uation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joint: Quit = ultimate bearing capacity Qa = allowable bearing capacity Put = ultimate bearing capacity Rock = allowable bearing capacity The complete of the capacity Qa = allowable bearing capacity Put = ultimate bearing capacity Rock Mechanics, 1980, P311, EQ 9.8) F.S. = factor of sinsupphi = NPhi-1 = S/B = Intermediate	### 184 ### 184 ### 185 ### 18	g well defined failure defined failure surface defined failure surface strip L/B=5 264735 psf 1838 psi 613 psi cocalized brittle fracture strip L/B=5 253713 psf 1762 psi 587 psi	348 psi surfaces. strip L/B=2 264099 psf 1834 psi 6111 psi re strip L/B=2 253076 psf 1757 psi 566 psi	square 269554 psf 1872 psi 624 psi square 258532 psf 1795 psi 598 psi	circular 241249 ps 1675 ps 558 ps circular 230227 ps 533 ps circular 78 ps

		DOVER ALLOWABLE	- SILTSTONI BEARING CA				
NPUT PARAMETERS							
	15 psi 31 degree 3 3 ft 98 pcf 35 ft 10 65.0 ft 20.0 ft 8170 psi 52 3 3	Required input for equations 6-1, 6-4, 6-5, 6-6 2160.0 Required input for all equations Required input for equations 6-1, 6-3 Required input for equations 6-1, 6-3, 6-4 Required input for equations 6-1, 6-3, 6-4, 6-8, Goodman Required input for equation 6-6 (strip foundation shape) and L/B ratio Required input for equation 6-6 (strip foundation shape) and L/B ratio Required input for equations 6-6 and Goodman Required input for equations 6-7 (cohesion equation) and Goodman Required input for equations 6-7 (cohesion equation) Required input for all equations, separate Goodman FS input.					
OHESION EQUATION (6	equation 6-7)		0.005				
		(c) cohesion =	11 psi				
IISCELLANEOUS STEPS	N ₄ =tan²(45+4/2)		3.12				
	N ₂ =N ₃ ^{1/2} (N ₃ ² -1)		15.47	14.69	13.92	13.15	10.83
	$N_q = N_{\phi}^2$		9.75				
	$N_c=2N_\phi^{1/2}(N_\phi+1)$ $N_{cr}=2N_\phi^2/1+N_\phi$ (cot ϕ) (S/B) (1-1/N $_\phi$) - N_ϕ	(cot 4) + 2N.1/2	14.57 1.4	15.30	16.32	18.21	17.49
		(65) \$7 - 214			· · · · · · · · · · · · · · · · · · ·		
OMPRESSIVE FAILURE	(equation 6-5, EM 1110-1-2908) MODE: open, near vertical joint set(s) S<	B: compressive fail	ure of individual roc	k columns.			
←	$q_{ut} = 2 c \tan(45 + \phi/2)$						
s.	q _{ult} = ultimate bearing capacity		31 psi				
	Q _a = allowable bearing capacity	•	10 psi				
GENERAL SHEAR FAILU	RE WITHOUT COHESION (equation 6-3, E MODE 1: moderately dipping joint set(s) MODE 2: two or more closely space join	S <b or="" s="">B: genera	al shear failure with al shear failure with	potential for failure a irregular failure surf	long joints. ace through rock ma	ss.	
7777	q _{uit} =0.5γBN _γ +γDN _q						
$/\Lambda\Lambda\Lambda$	L/B ratio: 1.8571		strip L/B=>10	strip L/B=5	strip L/B=2	square	circular
/ / X	q _{uit} ≈ ultimate bearing capacity		29394 psf 204 psi	28067 psf - 195 psi	26741 psf 186 psi	25415 psf 176 psi	21436 psf 149 psi
	Q _a = allowable bearing capacity		68 psi	65 psi	62 psi	59 psi	50 psi
BENERAL SHEAR FAILU	RE WITH COHESION (equation 6-1, EM 11 MODE 1: ductile, intact rock or with few j MODE 2. Closed, near vertical joint set(s	joints S>>B: genera s) S <b: general="" shea<="" td=""><td>r failure along well</td><td>defined failure surfa</td><td>ces.</td><td></td><td></td></b:>	r failure along well	defined failure surfa	ces.		
GENERAL SHEAR FAILU	MODE 1: ductile, intact rock or with few j MODE 2. Closed, near vertical joint set(s q _{uit} =cN _c +0.5γBN _γ +γDN _q L/B ratio: 1.8571	joints S>>B: genera s) S <b: general="" shea<="" td=""><td>r failure along well strip L/B=>10</td><td>defined failure surfac</td><td>ces. strip L/B=2</td><td>square 84758 psf</td><td>circular 59206 osf</td></b:>	r failure along well strip L/B=>10	defined failure surfac	ces. strip L/B=2	square 84758 psf	circular 59206 osf
GENERAL SHEAR FAILU	MODE 1: ductile, intact rock or with few j MODE 2. Closed, near vertical joint set(s q _{uit} =cN _c +0.5γBN _γ +γDN _q	joints S>>B: genera s) S <b: general="" shea<="" td=""><td>r failure along well</td><td>defined failure surfa</td><td>ces.</td><td>square 64758 psf 450 psi</td><td>59206 psf</td></b:>	r failure along well	defined failure surfa	ces.	square 64758 psf 450 psi	59206 psf
GENERAL SHEAR FAILU	MODE 1: ductile, intact rock or with few j MODE 2. Closed, near vertical joint set(s q _{uit} =cN _c +0.5γBN _γ +γDN _q L/B ratio: 1.8571	joints S>>B: genera s) S <b: general="" shea<="" td=""><td>r failure along well strip L/B=>10 60869 psf</td><td>defined failure surfac strip L/B=5 61116 psf</td><td>strip L/B=2 61993 psf</td><td>64758 psf</td><td>59206 psf 411 psi</td></b:>	r failure along well strip L/B=>10 60869 psf	defined failure surfac strip L/B=5 61116 psf	strip L/B=2 61993 psf	64758 psf	59206 psf 411 psi
	MODE 1: ductile, intact rock or with few j MODE 2. Closed, near vertical joint set(s q _{uit} =cN _c +0.5yBN _g +yDN _q LB ratio: 1.8571 q _{uit} = ultimate bearing capacity	joints S>>B : genera s) S <b: general="" shea<="" td=""><td>strip L/B=>10 60869 psf 423 psi 141 psi</td><td>strip L/B=5 61116 psf 424 psi 141 psi</td><td>strip L/B=2 61993 psf 431 psi 144 psi</td><td>64758 psf 450 psi</td><td>59206 psf 411 psi</td></b:>	strip L/B=>10 60869 psf 423 psi 141 psi	strip L/B=5 61116 psf 424 psi 141 psi	strip L/B=2 61993 psf 431 psi 144 psi	64758 psf 450 psi	59206 psf 411 psi
	MODE 1: ductile, intact rock or with few images and content of the man vertical joint set (state of the man vertical joint set (state of the man vertical joint set (state of the man vertical joint set (state of the man vertical joint of the man vertical v	joints S>>B : genera s) S <b: general="" shea<="" td=""><td>strip L/B=>10 60869 psf 423 psi 141 psi</td><td>strip L/B=5 61118 psf 424 psi 141 psi</td><td>strip L/B=2 61993 psf 431 psi 144 psi</td><td>64758 psf 450 psi 150 psi</td><td>59206 psf 411 psi 137 psi</td></b:>	strip L/B=>10 60869 psf 423 psi 141 psi	strip L/B=5 61118 psf 424 psi 141 psi	strip L/B=2 61993 psf 431 psi 144 psi	64758 psf 450 psi 150 psi	59206 psf 411 psi 137 psi
	MODE 1: ductile, intact rock or with few images and interest of the many series of the ma	joints S>>B : genera s) S <b: general="" shea<="" td=""><td>strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k</td><td>strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu</td><td>strip L/B=2 61993 psf 431 psi 144 psi</td><td>84758 psf 450 psi 150 psi</td><td>59206 psf 411 psi 137 psi</td></b:>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu	strip L/B=2 61993 psf 431 psi 144 psi	84758 psf 450 psi 150 psi	59206 psf 411 psi 137 psi
	MODE 1: ductile, intact rock or with few images and content of the man vertical joint set (state of the man vertical joint set (state of the man vertical joint set (state of the man vertical joint set (state of the man vertical joint of the man vertical v	joints S>>B : genera s) S <b: general="" shea<="" td=""><td>strip L/B=>10 60869 psf 423 psi 141 psi</td><td>strip L/B=5 61118 psf 424 psi 141 psi</td><td>strip L/B=2 61993 psf 431 psi 144 psi</td><td>64758 psf 450 psi 150 psi</td><td>59206 psf 411 psi 137 psi</td></b:>	strip L/B=>10 60869 psf 423 psi 141 psi	strip L/B=5 61118 psf 424 psi 141 psi	strip L/B=2 61993 psf 431 psi 144 psi	64758 psf 450 psi 150 psi	59206 psf 411 psi 137 psi
	MODE 1: ductile, intact rock or with few images and interest of the many series of the ma	joints S>>B : genera s) S <b: general="" shea<="" td=""><td>strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf</td><td>strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf</td><td>strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf</td><td>84758 psf 450 psi 150 psi square 61891 psf</td><td>59206 psf 411 psi 137 psi circular 56338 psf 391 psi</td></b:>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf	84758 psf 450 psi 150 psi square 61891 psf	59206 psf 411 psi 137 psi circular 56338 psf 391 psi
OCAL SHEAR FAILURE	MODE 1: ductile, intact rock or with few j MODE 2. Closed, near vertical joint set(s q _{uit} =cN _c +0.5γBN _γ +γDN _q L/B ratio: 1.8571 q _{uit} = ultimate bearing capacity q _a = allowable bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joint q _{uit} =cN _c +0.5γBN _γ L/B ratio: 1.8571 q _{uit} = ultimate bearing capacity	joints S>>B : general s) S <b: general="" shear<br="">shear shear ts S>>B: local shear</b:>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 1341 psi	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 133 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psi	59206 pst 411 psi 137 psi circular 58338 pst 391 psi
OCAL SHEAR FAILURE	MODE 1: ductile, intact rock or with few j MODE 2. Closed, near vertical joint set(s) quit=CNc+0.5yBN _y +yDN _q L/B ratio: 1.8571 quit= ultimate bearing capacity (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joint quit=CNc+0.5yBN _y L/B ratio: 1.8571 quit= ultimate bearing capacity qa = allowable bearing capacity uation 6-6, EM 1110-1-2908)	joints S>>B : general s) S <b: general="" shear<br="">shear shear ts S>>B: local shear</b:>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 134 psi	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 133 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psf 411 psi 137 psi circular 56338 psf 391 psi
OCAL SHEAR FAILURE	MODE 1: ductile, intact rock or with few images and interest of the property o	joints S>>B : general s) S <b: general="" shear<br="">shear shear ts S>>B: local shear</b:>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 1341 psi	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 133 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psf 411 psi 137 psi 137 psi circular 58338 psf 391 psi 130 psi
OCAL SHEAR FAILURE	MODE 1: ductile, intact rock or with few images and interest of the property o	joints S>>B : general s) S <b: general="" shear<br="">shear shear ts S>>B: local shear</b:>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 134 psi 3: Failure initiated b	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 133 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psf 411 psi 137 psi circular 56338 psf 391 psi 130 psi circular 21 psi
OCAL SHEAR FAILURE	MODE 1: ductile, intact rock or with few images and interest of the property o	joints S>>B : general s) S <b: general="" shear<br="">shear shear ts S>>B: local shear</b:>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 1341 psi	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 133 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psf 411 psi 137 psi circular 56338 psf 391 psi 130 psi
OCAL SHEAR FAILURE	MODE 1: ductile, intact rock or with few images and interest of the property o	joints S>>B : general shear shear shear ts S>>B: local shear and vertical joints S>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 134 psi 3: Failure initiated b	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 133 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 pst 411 psi 137 psi circular 58338 pst 391 psi 130 ps
OCAL SHEAR FAILURE SPLITTING FAILURE (equ	MODE 1: ductile, intact rock or with few imports and interest of the property	joints S>>B : general shear shear shear ts S>>B: local shear and vertical joints S>	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 134 psi B: Failure initiated b strip L/B=<32 8 psi 3 psi	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 133 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psf 411 psi 137 psi circular 58338 psf 391 psi 130 psi
OCAL SHEAR FAILURE SPLITTING FAILURE (equ	MODE 1: ductile, intact rock or with few images and mode 2. Closed, near vertical joint set(s) quit=CNc+0.5yBN ₂ +yDN ₂ **LB ratio: 1.8571 **Quit= ultimate bearing capacity **Qa = allowable bearing capacity **Qa = allowable bearing capacity **Qa = allowable bearing capacity **Quit=CNc+0.5yBN ₂ **LB ratio: 1.8571 **Quit= ultimate bearing capacity **Qa = allowable bearing capacity **uation 6-6, EM 1110-1-2908) **MODE: open or closed, widely spaced a **Quit= ultimate bearing capacity **Qa = allowable bearing capacity **uation 6-6, EM 1110-1-2908) **MODE: open or closed, widely spaced a **Quit= ultimate bearing capacity **qa = allowable bearing capacity **Introduction to Rock Mechanics, 1980, P31 **Nsubphi =	joints S>>B; general shear shear shear ts S>>B; local shear and vertical joints S>i	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 1341 psi B: Failure initiated b strip L/B=<32 8 psi 3 psi : 5 (Addi 3.1179475	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 135 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psf 411 psi 137 psi circular 56338 psf 391 psi 130 psi circular 21 psi
OCAL SHEAR FAILURE SPLITTING FAILURE (equ	MODE 1: ductile, intact rock or with few imports and interest of the property	joints S>>B; general shear shear shear ts S>>B; local shear and vertical joints S>i	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by le strip L/B=>10 58001 psf 403 psi 134 psi B: Failure initiated b strip L/B=<32 8 psi 3 psi : 5 (Addi 3.1179475	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 135 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 pst 411 psi 137 psi circular 58338 pst 391 psi 130 ps
OCAL SHEAR FAILURE SPLITTING FAILURE (equ	MODE 1: ductile, intact rock or with few imports of the many mode 2: Closed, near vertical joint set(structured in the many mode 2: Closed, near vertical joint set(structured in the many mode 2: Closed, near vertical joint set(structured in the many mode 2: Closed in the many mode 3: Closed in the mode 3: Closed in the many mode 3: Closed in the mode 3: Closed in the mode 3: Closed in the mode 3:	joints S>>B : general shear shear shear ts S>>B: local shear and vertical joints S>i	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 1341 psi B: Failure initiated b strip L/B=<32 8 psi 3 psi	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 135 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psi 411 psi 137 ps circular 58338 psi 391 psi 130 ps
OCAL SHEAR FAILURE SPLITTING FAILURE (equ	MODE 1: ductile, intact rock or with few imports of the many series of	joints S>>B : general shear shear shear ts S>>B: local shear and vertical joints S>i	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by le strip L/B=>10 58001 psf 403 psi 134 psi B: Failure initiated b strip L/B=<32 8 psi 3 psi 3 psi : 5 (Addi 3.1179475 0.5714286 1.1319589 0.5344603	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 135 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psi 411 psi 137 ps circular 58338 psi 391 psi 130 ps
OCAL SHEAR FAILURE	MODE 1: ductile, intact rock or with few imports of the many mode 2: Closed, near vertical joint set(structured in the many mode 2: Closed, near vertical joint set(structured in the many mode 2: Closed, near vertical joint set(structured in the many mode 2: Closed in the many mode 3: Closed in the mode 3: Closed in the many mode 3: Closed in the mode 3: Closed in the mode 3: Closed in the mode 3:	joints S>>B : general shear shear shear ts S>>B: local shear and vertical joints S>i	strip L/B=>10 60869 psf 423 psi 1411 psi failure caused by k strip L/B=>10 58001 psf 403 psi 1341 psi B: Failure initiated b strip L/B=<32 8 psi 3 psi	strip L/B=5 61116 psf 424 psi 141 psi ocalized brittle fractu strip L/B=5 58249 psf 405 psi 135 psi	strip L/B=2 61993 psf 431 psi 144 psi re strip L/B=2 59126 psf 411 psi 137 psi	84758 psf 450 psi 150 psi square 61891 psf 430 psi 143 psl	59206 psi 411 psi 137 ps circular 58338 psi 391 psi 130 ps

)VER - SHALE E BEARING CAI	PACITY			
INPUT PARAMETERS	c = cohesi	on: 5 psi	Required input for	equations 6-1, 6-4,	6-5 6-6	720.0 psf
	φ = phi ang		Required input for		00,00	720.0 pai
	D=depth of foundation below ground surfa			equations 6-1, 6-3		
	γ = effective unit weight of the rock ma			equations 6-1, 6-3,		
	B≃ width of the foundati				, 6-4, 6-6, Goodman	
	J = correction factor (see figure 6-2 of EM 1110-1-29		Required input for			
	L = length of foundati				foundation shape) and	d L/B ratio
	S = Joint spaci (q ₀) = unconfined compressive streng			equations 6-6 and		Candana.
					esion equation) and G	300dman
	(RMR) Rock Mass Ratir FS = factor of safety (min. 3, see eq. 6-11 EM 1110-1-29			equations 6-7 (coh	rete Goodman FS inp	ne ut
			Trequired input for	an equations, sepa	Tete Goodman / G inp	
COHESION EQUATION (eq	•	s = 0.000				
	(c) cohesion					
MISCELLANEOUS STEPS						
	N _e =tan²(45+¢/2)	2.88				
	$N_{\bullet} = N_{\bullet}^{1/2} (N_{\bullet}^{2} - 1)$	12.39	11.77	11.15	10.53	8.67
. •	$N_{y}=N_{\phi}^{-1/2}(N_{\phi}^{-2}-1)$ $N_{q}=N_{\phi}^{-2}$	8.30				
	$N_o = 2N_o^{1/2}(N_o + 1)$	13.18	13.83	14.76	16.47	15.81
	$N_{cr} = 2N_{c}^{2}/1 + N_{c} (\cot \phi) (S/B) (1-1/N_{c}) - N_{c} (\cot \phi) + 2N_{c}^{1/2}$	1.1				
COMPRESSIVE FAILURE	(equation 6-5, EM 1110-1-2908) MODE: open, near vertical joint set(s) S <b: compressive="" f<="" td=""><td>ailure of individual rock</td><td>columns.</td><td></td><td></td><td></td></b:>	ailure of individual rock	columns.			
	q _{ut} = 2 c tan(45 + ¢/2)					
	q _{uit} = ultimate bearing capacity	17 psi		-		
	Q _a = allowable bearing capacity	6 psi				
GENERAL SHEAR FAILUR	RE WITHOUT COHESION (equation 6-3, EM 1110-1-2908) MODE 1: moderately dipping joint set(s) S <b or="" s="">B: gen MODE 2: two or more closely space joint sets. S<<b: ger<="" td=""><td></td><td></td><td></td><td>35S.</td><td></td></b:>				35S.	
	q _{ut} =0.5yBN ₂ +yDN _a					
- $/$ $$ $$ $$	L/B ratio: 1.8571	44-in 1 /D->10	atria I /D=E	etrin I /Pro	******	circular
		strip L/B=>10	strip L/B=5	strip L/B≖2	square	
$I + X \times I$	q _{uit} = ultimate bearing capacity	23692 psf	22629 psf	21567 psf	20504 psf	17316 psf
/ / / / /		165 psi	157 psi	150 psi	142 psi	120 psi
	Q _e = allowable bearing capacity	55 psi	52 psi	50 psi	47 psi	40 psi
GENERAL SHEAR FAILUR	RE WITH COHESION (equation 6-1, EM 1110-1-2908) MODE 1: ductile, intact rock or with few joints S>>B: gen MODE 2. Closed, near vertical joint set(s) S <b: general="" st<="" td=""><td></td><td></td><td></td><td></td><td></td></b:>					
	q _{ut} =cN _c +0.5yBN _y +yDN _q					
	L/B ratio: 1.8571	strip L/B=>10	strip L/B=5	strip L/B≕2	square	circular
	q _{ult} = ultimate bearing capacity	33178 psf	32590 psf	32191 psf	32362 psf	28700 psf
F		230 psi	226 psi	224 psi	225 psi	199 psi
	q _a = allowable bearing capacity	77 psi	75 psi	75 psi	75 psi	66 psi
LOCAL SHEAR FAILURE (equation 6-4, EM 1110-1-2908) MODE: brittle intact rock or with few joints S>>B: local she	ear failure caused by lo	calized brittle fractu	re		
	$q_{ut}=cN_c+0.5\gamma BN_v$					
	L/B ratio: 1.8571	strip L/B=>10	strip L/B=5	strip L/B=2	square	circular
	Q _{ult} = ultimate bearing capacity	30738 psf	30149 psf	29751 psf	29921 psf	26259 psf
	quit - diditiate bearing capacity	213 psi	209 psi	207 psi	208 psi	182_psi
	Q _a = allowable bearing capacity	71 psi	70 psi	69 psi	69 psi	61 psi
		7.,				
SPLITTING FAILURE (equ	ation 6-6, EM 1110-1-2908) MODE: open or closed, widely spaced and vertical joints 5	S>B: Failure initiated by	y splitting leading to	general shear failu	re.	
		-4-11 (D20)				-ld
		strip L/B=<32			square	circular
	Q _{ult} = ultimate bearing capacity	2 psi			5 psi	5 psi
1 1	q _a = allowable bearing capacity	1 psi			2 psi	2 psi
GOODMAN FOLIATION (1-	stroduction to Rock Mechanics, 1980, P311, EQ 9.8)					
GOODMAN EQUATION (IN	,,					
	F.S. = factor of safe		tional input value)			
	Nsubphi =	2.8765727				
	NPhi-1 =	1.8765727				
	S/B = Intermediate	0.5714286 0.9967609				
	Intermediate	0.5311603				
	Capacity =	1499				
	Q_ = allowable bearing capacity	300 psi				

DOVER DSA

Lithology: LIMESTONE

	Average Elastic Modulus= STDEVP=	20,200 19,980 626.48	49.0 - 49.7 Average Compressive Strength= STDEVP=	04-13
24.74	Average Elastic Modulus=	19,980	Average Compressive Strength=	
15.22		20,200	49.0 - 49.7	4-13
31.31		20,190	52.1 - 52.8	4-05A
45.22*		19,790	50.6 - 51.3	C-04-06
19.48		18,910	83.0 - 83.7	4-03
32.95		20,810	81.7 - 82.5	4-03
(x10^6)		Strength (PSI)	Tested depth	ing
E _{tso} Elastic Modulus		Compressive		

*Note test results accompanied by * were not used in the statistical equations

DOVER DSA

Lithology: Upper Sandstone

Elastic	Modulus	(x10^6)	1.49	1.53	2.22	3.77	1.23	2.05	0.92	
								Average Elastic Modulus=	STDEVP=	
	Compressive	Strength (PSI)	5,210	6,800	5,550	8,710	4,360	6,126	1,511.35 4,614.65	
		Tested depth	12.3 - 13.1	14.9 - 15.7	43.4 - 44.1	23.3 - 24.0	41.4 - 42.2	Average Compressive Strength=	STDEVP= Average minus one STDEVP =	
		Boring	C-04-01	C-04-02	C-04-03	C-04-14	C-04-14			

*Note test results accompanied by * were not used in the statistical equations

DOVER DSA

Lithology: Lower Sandstone

Etso Elastic Modulus (x10^6) 2.81 3.80 2.06* 2.50 2.75	2.97	0.50
	Average Elastic Modulus=	STDEVP=
Compressive Strength (PSI) 8,270 14,900 3070* 8,530 9,170	10,218	2,723.21 7,494.29
Tested depth 61.3 - 62.0 65.6 - 66.4 97.0 - 97.8 54.3 - 55.0 60.3 - 61.1	Average Compressive Strength=	STDEVP= Average minus one STDEVP =
Boring C-04-06 C-04-06 C-04-09 C-04-09		

*Note test results accompanied by * were not used in the statistical equations

DOVER DSA

Lithology: Siltstone

E _{E50} Elastic	(x10^6)	3.03	3.03	2.60	4.26*	2.33	2.75	0.30
							Average Elastic Modulus=	STDEVP=
Compressive	Strength (PSI)	8,240	8,270	13,040	10,170	9,890	9,922	1,751.72 8,170.28
	Tested depth	100.3 - 101.0	79.0 - 79.7	44.3 - 45.0	48.6 - 49.3	41.4 - 42.1	Average Compressive Strength=	STDEVP= Average minus one STDEVP =
	Boring	C-04-04	C-04-05A	C-04-10	C-04-09	C-04-10		

*Note test results accompanied by * were not used in the statistical equations

DOVER DSA

Lithology: Shale

0.00	STDEVP=	649.98 2,822.52	STDEVP= Average minus one STDEVP =	
1.75	Average Elastic Modulus=	3,473	Average Compressive Strength=	
7.23*		3,880	90.0 - 90.8*	C-04-13
1.76		4,320	87.2 - 87.9	C-04-13
1.81		2,940	72.0 - 72.8	C-04-01
1.67		2,750	67.1 - 67.8	C-04-01
0.03*		*410*	60.2 - 61.5*	C-04-01
$(x10^{4})$	3)	Strength (PSI)	Tested depth	Boring
E _{tso} Elastic Modulus		Compressive		:
	•			

*Note test results accompanied by * were not used in the statistical equations

CLASSIFICATION PARAMETERS AND THEIR RATINGS

	PARAMETER	:TER			RANGES OF VALUES	: VALUES			
							For this lo	For this low range- Uniaxial	ial
•	Strength of intact rock material Point-load strength	Point-load strength index	>10 MPa	4-10 MPa	2-4 MPa	1-2 MPa	compressi	compressive test is preferred	red
		Uniaxial compressive strength	> 250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5-25 MPa	5-25 MPa 1-5 MPa <1 MPa	MPa
	Rat	Rating	15	12	7	4	2	-	0
6	Drill core q	Drill core quality RQD	90%-100%	%06-%5/	20%-75%	25%-50%		<25%	
7	Rat	Rating	20	41	13	9		3	
۲	Spacing Dis	Spacing Discontinuities	>2m	0.6-2m	200-600mm	60-200mm	•	<60mm	
,	Rat	Rating	20	15	10	8		2	
4	Condition of D	Condition of Discontinuities	Very rough surfaces. Not continuous No separation Unweathered wall rock	Slightly rough surfaces. Separation <1mm. Slightly weathered walls	Slightly rough surfaces. Separation <1mm. Highly weathered walls.	Slickensided surfaces OR Gouge <5mm thick OR Separation 1-5mm.	Soft goug Separation	Soft gouge >5mm thick OR Separation >5mm. Continuous	OUS.
	Rat	Rating	30	25	20.	10		0	
		Inflow per 10m tunnel length	None	<10 L/mm	10-25 L/mm	25-125 L/mm	>1	>125 L/mm	
2	Groundwater	Ratio joint water pressure major principal stress	0	0.0-0.1	0.1-0.2	0.2-0.5		>0.5	
		General Conditions	Completely dry	Damp	Wet	Dripping	1	Flowing	
	Rat	Rating	15	10	7	4		0	

			PARAMETER			Joint Orientation	Rating
Lithology	1.	2	3	4	5	Adjustment	Total
Limestone	12	13	. 10	10	7	-15	37
Upper Sandstone	4	17	15	25	7	7	99
Siltstone / Sandy	7	17	10	25	7	-15	51
Siltstone	7	20	10	25	7	-15	54
Shale	7	13	∞	9	7	-15	52

		Limesto	ne	Up	per Sa	ndstone	Sa	andy Si	Itstone		Siltsto	ne		Shal	ABUTMEN e		Coa	1	SS in	nterbedo	ded w/ Sh
Boring	ROD	THICK	PRODUCT	ROD	THICK	PRODUCT	RQD	THICK	PRODUCT	RQD	THICK	PRODUCT	RQD	THICK	PRODUCT	ŔQD	THICK	PRODUCT	RQD	THICK	PRODU
	70	1.1	77	93 100		232.5				200			18	4	72	2.4	54	129.6	((V)		
		-		100 92	5.0 5.0	500 460	100	_		200			93	3.7 2.8	260.4	PER TO					\vdash
				100	5.0	500				7.44			54	2.4	129.6	2000					
C-04-1		\Box		90	5.1	459			*	200			54	1.7	91.8	1			148 (13)		
		-		100 100	5.0 5.0	500 500	0.3	_		46			100	4.9	490 280	224 22.25 21			1000	_	
	8			80	4.9	392	47			1000 A				7.5	200	116.2					
				91		464.1). 									3.7.3			100		
	-			18	0.9	16.2	**			(1.3°c			3	 		W. 192	\vdash				\vdash $-$
	67	1.0	67	0	2.6	0	100	1	100	91	1.1	100.1	36	3.3	118.8	200					
	91	1.1	100.1	36	1.1	39.6	71	3.8	269.8	100	5.7	570	641.65			4			1307		
C-04-2	100	4.2 1.1	420 110	36 0	10.1	28.8	100 66	2.0 5.0	200 330	5,300			Q . F			1.7					⊢
U-04-2	98	5.0	490	40		172	100	2.9	290	100			11.52			7		_	7.		
	72	5.0	360	71	1.2	85.2	100	3.1	310	W. 2. 7			or And as			4 47		•	1.3.		
	100	3.8	380	78 98	5.0 5.0	390 480	100	7.7	770	(E)			4	$\vdash\vdash$		74. T	\vdash		and an		
	28	2.8	78.4		5.0	430	0	1.2	0	88	2.4	211.2	1000	2.6	- 0	50	1.6	80	2010	_	
	50	0.9	45	100	8.0	800	0	5.0	0	100			28	2.2	61.6	4.5					
	66	2.3	151.8	67		268	0 47	4.8	244.4				50		125 440	فغيامت	\vdash				
	85	1.6	<u>136</u> 0			273 210	47 88	5.2 5.0	244.4 440	SEA.3			88 30	5.0 5.0	150	Side Side	\vdash		629.3		
	2000		ō	100	4.4	440	90	5.0	450	A			66	2.7	178.2	X 0.					
				100		240	90	5.0	450	X			85 88	1.2	102 264		\vdash				-
C-04-3				88 92	5.0 5.0	440 460	92	5.1 2.4	469.2 0	25		<u>-</u>		3.0	204				A 91 3		
				94	2.8	263.2				01.05°									100		
				100		60				Ž.,							\vdash			-	├
	200	-	-	100		570 640							1.5	\vdash		-	Н			1	
				Tale Con	Ŭ.,	0.10)			4-1-2								
	0	1.4	0			0		0.8		4.			38		91.2	20	1.3	26	(). 	-	
	20 72	1.0 4.9	20 352.8			0		4.6	400.2	200			0 20			-	Н		17.74.7		
	31	0.1	3.1	56					ő				76	5.1					2.21		
C-04-4			0			310		_	0				72			-					
	-	-	0			183.6 95		\vdash	0				78 88	5.0 4.7		-	-	-		-	
	7.77		0			0			0	8.77			31	4.8		200					
			0		_	0			0				87	0.7		7.5-			100.00	-	⊢
	100		0	er.		0			0	4		_	2.2			77.7.7	-		7.3	 	
	90	3.1	279	W 31 1-2		0		4.9	455.7	90	4.8	432				/i		0			
	45	0.9	40.5			0		5.1	479.4	92	1.0	92			122.4						
			0			0		4.9 5.1	480.2 499.8	-			38 90		186.2 171		\vdash		-	1	
	- 1	-	0			Ö	92	4.2	386.4	7			45		193.5						
C-04-5a			0		_	0		4.9	431.2				77 - 173			1:			-	-	
	-		0		-	0		5.0 5.1	400 397.8	£ 37			-	-	_		\vdash				_
						Ö		1.5					77.								
			0	51	-	0			0							3	-		-		—
	82	3.5	287	7.7	+	0		5.0	490	90	5	450	86	3.9	335.4		1-			1	\vdash
	86	1.1	94.6			0	96	5.0	480	88	0.4	35.2	0	3.5							
		\Box	0		\perp	0											-			1	
	-		0		-	- 8		5.0 4.6			-		38 82							1	\vdash
C-04-6			. 0	31 J.		0	78	4.9	382.2	1						Y.7			1		
			0		1	0	50	5.0			_		445		-	13.7	-			1	-
	770	\vdash			+ -	0					-		1		\vdash				1	-	
				15.		0	125		0												
	32 - 23			4		0			76.5		1.0	0011			446	1000	1			+-	-
	100 48	2.8	280 119.6		+-	0					4.8 1.7	364.8 153					 -		-	+	+
		2.0	113.0			0	100	5.0	500	.:		100			, 7.0						
	-10					0	100	4.9	490				, i								\perp
C 04 7	77.7				+	0		5,1 0.2			-		1-	-	-	1.			 	+	+
C-04-7	2.37	\vdash				- 0	90	3.3						+							
						0	90	5.0	450												\perp
	7/ 138	\vdash			-	0		5.0 5.0			_		-	-	_		-		1-	+	+-
		\vdash			+	0		5.0	390	,, ·	-		1	+		 	+		-		_
				-	1 -	Ö		1			_		T	1		1	1		\vdash	1	T

$\overline{}$	_					ABUTMEN	$\overline{}$								ABUTMEN	I RQU					
- 1		Limest	one	Up	per Sa	ndstone	s	andy Si	itstone		Siltsto	ne		Shal	е		Co	al	SS in	terbedd	led w/ SH
Boring	RQD	THICK	PRODUCT	ROD	THICK	PRODUCT	RQD	THICK	PRODUCT	RQD	THICK	PRODUCT	ŔQD	THICK	PRODUCT	RQD	THICK	PRODUCT	RQDI	THICK	PRODUC
	98	4.8					44		17.6	2.5			34	2.9	98.6	44	0.2			.,	
- [775.		0				98	6	576			0		2.0	88				13.5		
	A-1		0			0	90 90	2.3	207				44	2.4		1					
[0	-			90	1.7	153				1.00			1500		·-			
C-04-8			0				94		470										4 374		
			0	1100		0			440							27.74				\rightarrow	
- 1	1,1927-1			6.75		- 0			124.8		_		200 200			45,334			100		
ŀ	1 34					0		3.7 5.1	355.2 443.7		_		RYEVERS.			and the state of			8.5.4		
l	;;;; ;	\neg		20.00		- 6		5.0	430		-		my I s							-	
- 1				2000			66		279.5	1.			100 E			1800			3.3		
							5 24 N									2.7%			4.5		
	100	2.2	220			0		4.2	386.4	98	1.5	147	86	0.6	51.6	49	0.2	9.8			
	86	2.2	189.2			0		2.7	264.6	100	1.2	120		3.8	186.2				\$6.5°		
	(to		0			. 0			350				49	1.0	49				die		
C-04-9		_	0			9			400	2.50			92	0.9	82.8	100					
			0			0	1		490 470	474			1. (4. h 1. h	\vdash		100	—		58.4		
- 1			0			1 0		5.0	430		—		10 C 3 10 C			100			2006		
	5.779		ő			0	86	5.0	430				7			À.			850		
- 1	17.78		0			ō			261	5 -5 .5						200			25.5		
				2 Her		0							Si-School			4.5			3		
	49	1.3	63.7		2.8				159.6	98		480.2	82	1.6	131.2	67	0.1	6.7			
	82	3.3	270.6		5.0		93	5.1	474.3	100	2.3	230	67	2.3	154.1	6. G.	_				
C-04-10			· ·	76	2.8	212.8	78 78	2.6	202.8 187.2	-5	\vdash		67	2.7	180.9	54	-				
J-04-10				400			84		420	50			1				-	_	1911		
- 1	1 5 6 km			1. 1.	<u> </u>		86	5.0	430	5			375			-			147.		
	100			-			60		60	S			17.70	\Box					21 .000		
	A						73.50			500						45			1		
	22	1.5	33				M.C.						22	1.0	22	22	0.7	15.4			
				بينشب			Carrier Co				<u> </u>		0		0	4.75			120		
C-04-11							77 C.	4					0		0		-		(100 to 1 30 di 50		
				<u> </u>			- 44	-			-		19	2.1	39.9	, <u>di</u>	\vdash		7 1	\vdash	
_	200		,	}	-		1	-		-	-		0	0.8	0	A	\vdash		9.0	\vdash	
	7 7 1	-		2		-		-		-			0		0		_		70.		
C-04-12				1			100	1			1		27	1.3	35.1	7.7			71.5	\vdash	
				9-	<u> </u>								27	3.5	94.5				1		
	Company of			855.			27.5						1						100		
	78	1.4	109.2		1,1		100	4.4	440	8		0			69.3	99			100	3.3	33
	78	2.0	156	92				1		_	-		78		109.2	78				\vdash	
	90	4.8 0.7	432 67.2		5.2			-		L-	-		100		80	80	0.3	24		\vdash	
	96	0.7	67.2	100	5.0 5.0				-	-	1	-	100		90 500	Sec.					
	7.			62	4.9			+		†	— —		100	5.0	500	(3)			17/67		
	1			52	0.5						T		100		510	,			3. 3. 1		
	1.15			52	4.5	234							100	5.0	500	2. 1					
C-04-13				78	0.2	15,6							90		9						
	,			٠, ٠, ٠			<u></u>	-		_	1		96		422.4				4.1.1	\vdash	
	- 1			-	ــــــ			+		ļ	-		80		32		<u> </u>				
	V					-		+		-	 		100		336 70	137			3		
				100				 	 	-	1		100	-0.7	10				0.5	\vdash	
	82	0.5	41	72	1.3	93.6	74	0.3	22.2		t		94	2.0	188	72	1.0	1	72	0.1	7
	72	0.6	43.2	94	2.9								82		369				100	3.7	3
	92	1.1		100	5.1	510	E						100	1.0	100	30			7.5		
	86	4.4		100									100		510				7.7		
				98	5.2			+-			-		100	5.0		13.1	_		2/14		
C-04-14				85 30	4.8			-			\vdash		88	5.0	440		\vdash	-			
				30	2.1	63	· · · · ·	+		100	\vdash		92 72	3.9 2.0	358.8 144		-	 	5.35	$\vdash\vdash$,
				1000	-		-	+		*****	\vdash		30	0.6			 				
	3 1			100				t			\vdash		86	0.5	43				100	\vdash	
				, ,									86 68	3.8							
							100						68	1.0	68				17.73		
													74	4.6	340.4				1.77		
		82.1	5977.8		220.9	17103.7	1	303.4	25463.1		36.8	3385.5	1	240.7	12478.5	I	60.8	362.7	1	7.1	70
Totals		02.1	0017.0	-						_						_			_		

	Limestone Unit Weight (pcf)	Upper Sandstone Unit Weight (pcf)	Sandy Siltstone Unit Weight (pcf)	Silstone Unit Weight (pcf)	Shale Unit Weight (pcf)
SAMPLE 1	170.1	154.2	165.1	162.1	161.3
SAMPLE 2	168.0	156.3	172.1	167.6	162.1
SAMPLE 3	168.8	145.8	143.8	167.4	161.4
SAMPLE 4	168.6	140.8	155.9	164.7	161.3
SAMPLE 5	167.3	143.2	161.6	167.3	
Average Unit Weight=	168.56	148.06	159.70	165.82	161.53

EXHIBIT II-7

UPLIFT

EXHIBIT II-8

MAPPING OF FAULTS AND JOINTS

EXHIBIT II-9

ANCHOR EMBEDMENT

Summary of Anchor Calculations

Anchor depth (feet) Bond length (feet) 45

.06 inch strand, with design load 35.2 kips

of strands Per strand Per anchor

61 3

35.2 2144.76 6434.28

Design 60%

Load kips

Load kips 46.8 2853 Load kips 41.0 2502

Max Test 80% Lock Off 70% GUTS kips 58.6

ANALYSIS FOR TENSION ANCHOR SYSTEMS: ANCHOR DEPTHS (EM 1110-1-2908)

Anchors Per area

Description	Symbol	Value
pcf effective unit weight of rock		160
FS = factor of safety	FS=	4
c = rock mass cohesion intercept*	c=	4355.1 psf
F = anchor force required for stability	F=	2144760 pounds
w = unit weight of rock	w=	97.6 pcf Buoyant Weight
s = anchor spacing	s=	22 ft
I = row spacing (for anchors with multiple rows)	l=	8 ft

Application	Formula	Results
single anchors in competent rock	sqrt(FS*F/c*3.14159)	25
single row of anchors in competent rock	(FS*F)/cs	90
multiple row of anchors in competent rock, with a factor of safety of 1.5	(FS*F)/wls	187
single anchor in fractured rock, with a factor of safety of 1.5	cbrt((3FS*F)/(w*3.14159))	32
single row of anchors in fractured rock, with a factor of safety of 1.5	sqrt(FS*F/ws)	39
multiple row of anchors in fractured rock, with a factor of safety of 1.5	(FS*F)/wls	187

^{*} c= a weighted average of the cross bed shear strength

single anchor in fractured rock with the combined force of all the anchors in that monolith

cbrt((3FS*F)/(w*3.14159))

ROCK TYPES PRESENT	AVG. THICKNESS (ft.)	SHEAR STREN	IGTH (psi)
limestone	4.00	150	(test)
Upper Sandstone	0.00	88	(test)
Siltstone / Sandy	25.00	20	(test)
Siltstone	8.00	15	(test)
Shale	4.00	5	(test)
TOTAL THICKNESS BENEATH FAILURE	41.00 feet		, ,
	WEIGHTED MEAN:	30	psi
		rock mass cohesion*	

^{*} c= a weighted average of the cross bed shear strength

CALCULATING BOND LENGTHS FOR ROCK ANCHOR SYSTEM

ROCK TYPES PRESENT	AVG. THICKNESS (ft.)	BOND ST	RENGTH (psi)
Limestone	0.00	85	(test)
Sandstone	0.00	110	(test)
Siltstone / Sandy	45.00	95	(test)
Siltstone	0.00	90	(test)
Shale	0.00	50	(test)
TOTAL THICKNESS OF BOND ZONE:	45.00 feet		
	WEIGHTED MEAN:	95	psi
		Working	Bond Strength

COMPOSITE LITHOLOGY using working bo	nd strength, and v	/arious diameters		
LOCK OFF KIPS:	2502	2502	2502	2502
ANCHOR BOND STRENGTH (CHOSEN):	95	95	95	95
HOLE DIAMETER (in.):	14.00	15.00	16.00	16.25
RADIUS	7.00	7.50	8.00	8.13
BOND AREA REQ'D. (sq. in.):	26339.16	26339.16	26339.16	26339.16
ANCHOR BOND LENGTH (in.):	599	559	524	516
NCHOR BOND LENGTH (ft.):	49.9	46.6	43.7	43.0
			45	

Design 60%

Load kips

Summary of Anchor Calculations

Anchor depth	(feet)	Taking a	27	E SALES
Bond length	(feet)		25	

Area of Bar	3.14
Bar Size in Inches	2
Bar strength ksi	150

283

Max Test 80% Lock Off 70% GUTS Load kips Load kips 376 330

kips 471

Anchors Per area 1131

ANALYSIS FOR TENSION ANCHOR SYSTEMS: ANCHOR DEPTHS (EM 1110-1-2908)

Description	Symbol	Value
pcf effective unit weight of rock	_	160
FS = factor of safety	FS=	4
c = rock mass cohesion intercept*	c=	4355.1 psf
F = anchor force required for stability	F=	282743 pounds
w = unit weight of rock	w=	97.6 pcf Buoyant Weight
s = anchor spacing	s=	15 ft
I = row spacing (for anchors with multiple rows)	 =	15 ft

Application	Formula	Results
single anchors in competent rock	sqrt(FS*F/c*3.14159)	9
single row of anchors in competent rock	(FS*F)/cs	17
multiple row of anchors in competent rock, with a factor of safety of 1.5	(FS*F)/wls	19
single anchor in fractured rock, with a factor of safety of 1.5	cbrt((3FS*F)/(w*3.14159))	16
single row of anchors in fractured rock, with a factor of safety of 1.5	sqrt(FS*F/ws)	17
multiple row of anchors in fractured rock, with a factor of safety of 1.5	(FS*F)/wls	19

^{*} c= a weighted average of the cross bed shear strength

single anchor in fractured rock with the combined force of all the anchors in that monolith

cbrt((3FS*F)/(w*3.14159))

	WEIGHTED MEAN:	30	psi
TOTAL THICKNESS BENEATH FAILURE	41.00 feet		
Shale	4.00	5	(test)
Siltstone	8.00	15	(test)
Siltstone / Sandy	25.00	20	(test)
Upper Sandstone	0.00	88	(test)
limestone	4.00	150	(test)
ROCK TYPES PRESENT	AVG. THICKNESS (ft.)	SHEAR STRE	NGTH (psi)

^{*} c= a weighted average of the cross bed shear strength

CALCULATING BOND LENGTHS FOR ROCK ANCHOR SYSTEM

ROCK TYPES PRESENT	AVG. THICKNESS (ft.)	BOND STRE	NGTH (psi)
Limestone	0.00	85	(test)
Sandstone	0.00	110	(test)
Siltstone / Sandy	25.00	95	(test)
Siltstone	0.00	90	(test)
Shale	5.00	50	(test)
TOTAL THICKNESS OF BOND ZONE:	30.00 feet		
	WEIGHTED MEAN:	88	psi
<u> </u>		Working Bo	nd Strength

COMPOSITE LITHOLOGY using working bor	nd strength, and v	arious diameters		
LOCK OFF KIPS:	330	330	330	330
ANCHOR BOND STRENGTH (CHOSEN):	88	88	88	88
HOLE DIAMETER (in.):	3.00	4.00	5.00	6.00
RADIUS	1.50	2.00	2.50	3.00
BOND AREA REQ'D. (sq. in.):	3769.91	3769.91	3769.91	3769.91
ANCHOR BOND LENGTH (in.):	399	300	240	200
ANCHOR BOND LENGTH (ft.):	33.3	25.0	20.0 25	16.6

Summary of Anchor Calculations

Anchor depth	(feet)	31
Bond length	(feet)	25

Area of Bar	3.14
Bar Size in Inches	2
Bar strength ksi	150
Anchors Per area	6

Load kips 283 1696

Design 60%

Load kips

376

Load kips 330

Max Test 80% Lock Off 70% GUTS

kips 471

ANALYSIS FOR TENSION ANCHOR SYSTEMS: ANCHOR DEPTHS (EM 1110-1-2908)

Description	Symbol	Value
pcf effective unit weight of rock		160
FS = factor of safety	FS=	4
c = rock mass cohesion intercept*	c=	4355.1 psf
F = anchor force required for stability	F=	282743 pounds
w = unit weight of rock	w=	97.6 pcf Buoyant Weight
s = anchor spacing	s=	15 ft
I = row spacing (for anchors with multiple rows)	1=	15 ft

Formula	Results
sqrt(FS*F/c*3.14159)	9
(FS*F)/cs	17
(FS*F)/wls	19
cbrt((3FS*F)/(w*3.14159))	16
sqrt(FS*F/ws)	17
(FS*F)/wls	19
	sqrt(FS*F/c*3.14159) (FS*F)/cs (FS*F)/wls cbrt((3FS*F)/(w*3.14159)) sqrt(FS*F/ws)

^{*} c= a weighted average of the cross bed shear strength

single anchor in fractured rock with the combined force of all the anchors in that monolith

cbrt((3FS*F)/(w*3.14159))

ROCK TYPES PRESENT	AVG. THICKNESS (ft.)	SHEAR STREE	NGTH (psi)
limestone	4.00	150	(test)
Upper Sandstone	0.00	88	(test)
Siltstone / Sandy	25.00	20	(test)
Siltstone	8.00	15	(test)
Shale	4.00	5	(test)
TOTAL THICKNESS BENEATH FAILURE	41.00 feet		
	WEIGHTED MEAN:	30	psi
		rock mass cohesio	n*

^{*} c= a weighted average of the cross bed shear strength

CALCULATING BOND LENGTHS FOR ROCK ANCHOR SYSTEM

ROCK TYPES PRESENT	AVG. THICKNESS (ft.)	BOND STRE	NGTH (psi)
Limestone	0.00	85	(test)
Sandstone	0.00	110	(test)
Siltstone / Sandy	25.00	95	(test)
Siltstone	0.00	90	(test)
Shale	5.00	50	(test)
TOTAL THICKNESS OF BOND ZONE:	30.00 feet		
	WEIGHTED MEAN:	88	psi
		Working Bo	nd Strength

COMPOSITE LITHOLOGY using working box	nd strength, and	various diameters		
LOCK OFF KIPS:	330	330	330	330
ANCHOR BOND STRENGTH (CHOSEN):	88	88	88	88
HOLE DIAMETER (in.):	3.00	4.00	5.00	6.00
RADIUS	1.50	2.00	2.50	3.00
BOND AREA REQ'D. (sq. in.):	3769.91	3769.91	3769.91	3769.91
ANCHOR BOND LENGTH (in.):	399	300	240	200
ANCHOR BOND LENGTH (ft.):	33.3	25.0	20.0 25	16.6

Summary of Anchor Calculations

Anchor depth	(feet)	27
Bond length	(feet)	25

		Design 60%	Max Test 80%	Lock Off 70%	GUTS
Area of Bar	3.14	Load kips	Load kips	Load kips	kips
Bar Size in Inches	2	283	376	330	471
Dor of sonoth kei	450				

Anchors Per area 4 1131

ANALYSIS FOR TENSION ANCHOR SYSTEMS: ANCHOR DEPTHS (EM 1110-1-2908)

Description	Symbol	Value
pcf effective unit weight of rock		160
FS = factor of safety	FS=	, 4
c = rock mass cohesion intercept*	c=	4355.1 psf
F = anchor force required for stability	F=	282743 pounds
w = unit weight of rock	w=	97.6 pcf Buoyant Weight
s = anchor spacing	s=	15 ft
I = row spacing (for anchors with multiple rows)	 =	15 ft

Application	Formula	Results
single anchors in competent rock	sqrt(FS*F/c*3.14159)	9
single row of anchors in competent rock	(FS*F)/cs	17
multiple row of anchors in competent rock, with a factor of safety of 1.5	(FS*F)/wls	19
single anchor in fractured rock, with a factor of safety of 1.5	cbrt((3FS*F)/(w*3.14159))	16
single row of anchors in fractured rock, with a factor of safety of 1.5	sqrt(FS*F/ws)	17
multiple row of anchors in fractured rock, with a factor of safety of 1.5	(FS*F)/wls	19

^{*} c= a weighted average of the cross bed shear strength

single anchor in fractured rock with the combined force of all the anchors in that monolith

cbrt((3FS*F)/(w*3.14159))

25.5

ROCK TYPES PRESENT	AVG. THICKNESS (ft.)	SHEAR STRE	NGTH (psi)
limestone	4.00	150	(test)
Upper Sandstone	0.00	88	(test)
Siltstone / Sandy	25.00	20	(test)
Siltstone	8.00	15	(test)
Shale	4.00	5	(test)
TOTAL THICKNESS BENEATH FAILURE	41.00 feet		
WEIGHTED MEAN:		30	psi
	<u> </u>	rock mass cohesic	n*

^{*} c= a weighted average of the cross bed shear strength

CALCULATING BOND LENGTHS FOR ROCK ANCHOR SYSTEM

ROCK TYPES PRESENT	AVG. THICKNESS (ft.)	BOND STRE	NGTH (psi)
Limestone	0.00	85	(test)
Sandstone	0.00	110	(test)
Siltstone / Sandy	25.00	95	(test)
Siltstone	0.00	90	(test)
Shale	5.00	50	(test)
TOTAL THICKNESS OF BOND ZONE:	30.00 feet		
	WEIGHTED MEAN:	88	psi
		Working Bo	nd Strength

COMPOSITE LITHOLOGY using working bor	nd strength, and v	arious diameters		
LOCK OFF KIPS:	330	330	330	330
ANCHOR BOND STRENGTH (CHOSEN):	88	88	88	88
HOLE DIAMETER (in.):	3.00	4.00	5.00	6.00
RADIUS	1.50	2.00	2.50	3.00
BOND AREA REQ'D. (sq. in.):	3769.91	3769.91	3769.91	3769.91
ANCHOR BOND LENGTH (in.):	399	300	240	200
ANCHOR BOND LENGTH (ft.):	33.3	25.0	20.0	16.6
			25	